IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-024-55523-0.html
   My bibliography  Save this article

Self-assembled materials with an ordered hydrophilic bilayer for high performance inverted Perovskite solar cells

Author

Listed:
  • Geping Qu

    (Southern University of Science and Technology
    City University of Hong Kong)

  • Letian Zhang

    (Southern University of Science and Technology)

  • Ying Qiao

    (Southern University of Science and Technology)

  • Shaokuan Gong

    (Southern University of Science and Technology)

  • Yuanjia Ding

    (Southern University of Science and Technology)

  • Yuli Tao

    (University of Science and Technology of China)

  • Siyuan Cai

    (Southern University of Science and Technology)

  • Xiao-Yong Chang

    (Southern University of Science and Technology)

  • Qian Chen

    (Southern University of Science and Technology)

  • Pengfei Xie

    (Southern University of Science and Technology)

  • Junyuan Feng

    (Southern University of Science and Technology)

  • Changqin Gao

    (Southern University of Science and Technology)

  • Guopeng Li

    (Southern University of Science and Technology)

  • Hui Xiao

    (Northwest Normal University)

  • Fei Wang

    (Shenzhen Polytechnic University)

  • Hanlin Hu

    (Shenzhen Polytechnic University)

  • Jie Yang

    (Henan University)

  • Shi Chen

    (Henan University)

  • Alex K.-Y. Jen

    (City University of Hong Kong)

  • Xihan Chen

    (Southern University of Science and Technology)

  • Zong-Xiang Xu

    (Southern University of Science and Technology
    Southern University of Science and Technology)

Abstract

While self-assembled material based inverted perovskite solar cells have surpassed power conversion efficiencies of 26%, enhancing their performance in large-area configurations remains a significant challenge. In this work, we report a self-assembled material based hole-selective layer 4-(7H-dibenzo[c,g]carbazol-7-yl)phenyl)phosphonic acid, with a π-expanded conjugation. The enhanced intermolecular π–π interactions facilitate the self-assembly of 4-(7H-dibenzo[c,g]carbazol-7-yl)phenyl)phosphonic acid molecules to form an ordered bilayer with a hydrophilic surface, which passivates the buried perovskite interface defect and enables high-quality and large-area perovskite preparation, while simultaneously enhancing interfacial charge extraction and transport. The certified efficiency of 4-(7H-dibenzo[c,g]carbazol-7-yl)phenyl)phosphonic acid based small-area (0.0715 cm2) device is 26.39% with high stability. Furthermore, a certified efficiency of 25.21% is achieved for a 99.12 mm2 large area device.

Suggested Citation

  • Geping Qu & Letian Zhang & Ying Qiao & Shaokuan Gong & Yuanjia Ding & Yuli Tao & Siyuan Cai & Xiao-Yong Chang & Qian Chen & Pengfei Xie & Junyuan Feng & Changqin Gao & Guopeng Li & Hui Xiao & Fei Wang, 2025. "Self-assembled materials with an ordered hydrophilic bilayer for high performance inverted Perovskite solar cells," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55523-0
    DOI: 10.1038/s41467-024-55523-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55523-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55523-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. So Min Park & Mingyang Wei & Nikolaos Lempesis & Wenjin Yu & Tareq Hossain & Lorenzo Agosta & Virginia Carnevali & Harindi R. Atapattu & Peter Serles & Felix T. Eickemeyer & Heejong Shin & Maral Vafai, 2023. "Low-loss contacts on textured substrates for inverted perovskite solar cells," Nature, Nature, vol. 624(7991), pages 289-294, December.
    2. Zheng Liang & Yong Zhang & Huifen Xu & Wenjing Chen & Boyuan Liu & Jiyao Zhang & Hui Zhang & Zihan Wang & Dong-Ho Kang & Jianrong Zeng & Xingyu Gao & Qisheng Wang & Huijie Hu & Hongmin Zhou & Xiangbin, 2023. "Homogenizing out-of-plane cation composition in perovskite solar cells," Nature, Nature, vol. 624(7992), pages 557-563, December.
    3. Mark V. Khenkin & Eugene A. Katz & Antonio Abate & Giorgio Bardizza & Joseph J. Berry & Christoph Brabec & Francesca Brunetti & Vladimir Bulović & Quinn Burlingame & Aldo Di Carlo & Rongrong Cheacharo, 2020. "Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures," Nature Energy, Nature, vol. 5(1), pages 35-49, January.
    4. Rui He & Wanhai Wang & Zongjin Yi & Felix Lang & Cong Chen & Jincheng Luo & Jingwei Zhu & Jarla Thiesbrummel & Sahil Shah & Kun Wei & Yi Luo & Changlei Wang & Huagui Lai & Hao Huang & Jie Zhou & Bings, 2023. "Improving interface quality for 1-cm2 all-perovskite tandem solar cells," Nature, Nature, vol. 618(7963), pages 80-86, June.
    5. Jia Li & Haoming Liang & Chuanxiao Xiao & Xiangkun Jia & Renjun Guo & Jinxi Chen & Xiao Guo & Ran Luo & Xi Wang & Minghui Li & Michael Rossier & Alina Hauser & Flavio Linardi & Ezra Alvianto & Shuncha, 2024. "Enhancing the efficiency and longevity of inverted perovskite solar cells with antimony-doped tin oxides," Nature Energy, Nature, vol. 9(3), pages 308-315, March.
    6. Sanwan Liu & Jingbai Li & Wenshan Xiao & Rui Chen & Zhenxing Sun & Yong Zhang & Xia Lei & Shuaifeng Hu & Manuel Kober-Czerny & Jianan Wang & Fumeng Ren & Qisen Zhou & Hasan Raza & You Gao & Yitong Ji , 2024. "Buried interface molecular hybrid for inverted perovskite solar cells," Nature, Nature, vol. 632(8025), pages 536-542, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuxin Yao & Biao Li & Degong Ding & Chenxia Kan & Pengjie Hang & Daoyong Zhang & Zechen Hu & Zhenyi Ni & Xuegong Yu & Deren Yang, 2025. "Oriented wide-bandgap perovskites for monolithic silicon-based tandems with over 1000 hours operational stability," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    2. Rui Wang & Xiaoyu Liu & Shan Yan & Ni Meng & Xinmin Zhao & Yu Chen & Hongxiang Li & Saif M. H. Qaid & Shaopeng Yang & Mingjian Yuan & Tingwei He, 2024. "Efficient wide-bandgap perovskite photovoltaics with homogeneous halogen-phase distribution," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Yao Zhang & Chunyan Li & Haiyan Zhao & Zhongxun Yu & Xiaoan Tang & Jixiang Zhang & Zhenhua Chen & Jianrong Zeng & Peng Zhang & Liyuan Han & Han Chen, 2024. "Synchronized crystallization in tin-lead perovskite solar cells," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Giovanni Pica & Lorenzo Pancini & Christopher E. Petoukhoff & Badri Vishal & Francesco Toniolo & Changzeng Ding & Young-Kwang Jung & Mirko Prato & Nada Mrkyvkova & Peter Siffalovic & Stefaan De Wolf &, 2024. "Photo-ferroelectric perovskite interfaces for boosting VOC in efficient perovskite solar cells," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Jingwei Zhu & Xiaozhen Huang & Yi Luo & Wenbo Jiao & Yuliang Xu & Juncheng Wang & Zhiyu Gao & Kun Wei & Tianshu Ma & Jiayu You & Jialun Jin & Shenghan Wu & Zhihao Zhang & Wenqing Liang & Yang Wang & S, 2025. "Self-assembled hole-selective contact for efficient Sn-Pb perovskite solar cells and all-perovskite tandems," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    6. Shuxian Du & Hao Huang & Zhineng Lan & Peng Cui & Liang Li & Min Wang & Shujie Qu & Luyao Yan & Changxu Sun & Yingying Yang & Xinxin Wang & Meicheng Li, 2024. "Inhibiting perovskite decomposition by a creeper-inspired strategy enables efficient and stable perovskite solar cells," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Yang Peng & Yu Chen & Jing Zhou & Chuan Luo & Weijian Tang & Yuwei Duan & Yihui Wu & Qiang Peng, 2025. "Enlarging moment and regulating orientation of buried interfacial dipole for efficient inverted perovskite solar cells," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    8. Junzhi Ye & Navendu Mondal & Ben P. Carwithen & Yunwei Zhang & Linjie Dai & Xiang-Bing Fan & Jian Mao & Zhiqiang Cui & Pratyush Ghosh & Clara Otero‐Martínez & Lars Turnhout & Yi-Teng Huang & Zhongzhen, 2024. "Extending the defect tolerance of halide perovskite nanocrystals to hot carrier cooling dynamics," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Wang, Zixuan & Chen, Zijian & Wang, Boyuan & Wu, Chuang & Zhou, Chao & Peng, Yang & Zhang, Xinyu & Ni, Zongming & Chung, Chi-yung & Chan, Ching-chuen & Yang, Jian & Zhao, Haitao, 2025. "Digital manufacturing of perovskite materials and solar cells," Applied Energy, Elsevier, vol. 377(PB).
    10. Zhou, Yi-Peng & Wang, Liang-Xu & Wang, Bo-Yi & Chen, Yang & Ran, Chen-Xin & Wu, Zhong-Bin, 2024. "Polarization management of photonic crystals to achieve synergistic optimization of optical, thermal, and electrical performance of building-integrated photovoltaic glazing," Applied Energy, Elsevier, vol. 372(C).
    11. Wenbo Li & Zhe Li & Shun Zhou & Yanzhuo Gou & Guang Li & Jinghao Li & Cheng Wang & Yan Zeng & Jiakai Yan & Yan Li & Wei Dai & Yaoguang Rong & Weijun Ke & Ti Wang & Hongxing Xu, 2025. "Unveiling the nexus between irradiation and phase reconstruction in tin-lead perovskite solar cells," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    12. Jin Zhou & Shiqiang Fu & Shun Zhou & Lishuai Huang & Cheng Wang & Hongling Guan & Dexin Pu & Hongsen Cui & Chen Wang & Ti Wang & Weiwei Meng & Guojia Fang & Weijun Ke, 2024. "Mixed tin-lead perovskites with balanced crystallization and oxidation barrier for all-perovskite tandem solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Zheng Fang & Bingru Deng & Yongbin Jin & Liu Yang & Lisha Chen & Yawen Zhong & Huiping Feng & Yue Yin & Kaikai Liu & Yingji Li & Jinyan Zhang & Jiarong Huang & Qinghua Zeng & Hao Wang & Xing Yang & Ji, 2024. "Surface reconstruction of wide-bandgap perovskites enables efficient perovskite/silicon tandem solar cells," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Li, Bowei & Jayawardena, K.D. G. Imalka & Zhang, Jing & Bandara, Rajapakshe Mudiyanselage Indrachapa & Liu, Xueping & Bi, Jingxin & Silva, Shashini M. & Liu, Dongtao & Underwood, Cameron C.L. & Xiang,, 2024. "Stability of formamidinium tin triiodide-based inverted perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    15. Mubai Li & Riming Sun & Jingxi Chang & Jingjin Dong & Qiushuang Tian & Hongze Wang & Zihao Li & Pinghui Yang & Haokun Shi & Chao Yang & Zichao Wu & Renzhi Li & Yingguo Yang & Aifei Wang & Shitong Zhan, 2023. "Orientated crystallization of FA-based perovskite via hydrogen-bonded polymer network for efficient and stable solar cells," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Dhruba B. Khadka & Yasuhiro Shirai & Masatoshi Yanagida & Hitoshi Ota & Andrey Lyalin & Tetsuya Taketsugu & Kenjiro Miyano, 2024. "Defect passivation in methylammonium/bromine free inverted perovskite solar cells using charge-modulated molecular bonding," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    17. Safat Dipta, Shahriyar & Schoenlaub, Jean & Habibur Rahaman, Md & Uddin, Ashraf, 2022. "Estimating the potential for semitransparent organic solar cells in agrophotovoltaic greenhouses," Applied Energy, Elsevier, vol. 328(C).
    18. Jiajia Suo & Bowen Yang & Edoardo Mosconi & Dmitry Bogachuk & Tiarnan A. S. Doherty & Kyle Frohna & Dominik J. Kubicki & Fan Fu & YeonJu Kim & Oussama Er-Raji & Tiankai Zhang & Lorenzo Baldinelli & Lu, 2024. "Multifunctional sulfonium-based treatment for perovskite solar cells with less than 1% efficiency loss over 4,500-h operational stability tests," Nature Energy, Nature, vol. 9(2), pages 172-183, February.
    19. Weiqing Chen & Shun Zhou & Hongsen Cui & Weiwei Meng & Hongling Guan & Guojun Zeng & Yansong Ge & Sengke Cheng & Zixi Yu & Dexin Pu & Lishuai Huang & Jin Zhou & Guoyi Chen & Guang Li & Hongyi Fang & Z, 2025. "Universal in situ oxide-based ABX3-structured seeds for templating halide perovskite growth in All-perovskite tandems," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    20. Xiaoming Chang & Randi Azmi & Tinghuan Yang & Nan Wu & Sang Young Jeong & Herui Xi & Drajad Satrio Utomo & Badri Vishal & Furkan H. Isikgor & Hendrik Faber & Zhaoheng Ling & Mingjie He & Marco Marengo, 2025. "Solvent-dripping modulated 3D/2D heterostructures for high-performance perovskite solar cells," Nature Communications, Nature, vol. 16(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55523-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.