IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v600y2021i7888d10.1038_s41586-021-04053-6.html
   My bibliography  Save this article

High-frequency and intrinsically stretchable polymer diodes

Author

Listed:
  • Naoji Matsuhisa

    (Stanford University
    Nanyang Technological University
    Keio University
    Japan Science and Technology Agency, PRESTO)

  • Simiao Niu

    (Stanford University)

  • Stephen J. K. O’Neill

    (Stanford University)

  • Jiheong Kang

    (Stanford University)

  • Yuto Ochiai

    (Stanford University)

  • Toru Katsumata

    (Stanford University
    Asahi Kasei Corporation)

  • Hung-Chin Wu

    (Stanford University)

  • Minoru Ashizawa

    (Stanford University
    Tokyo Institute of Technology)

  • Ging-Ji Nathan Wang

    (Stanford University)

  • Donglai Zhong

    (Stanford University)

  • Xuelin Wang

    (Stanford University
    Beihang University)

  • Xiwen Gong

    (Stanford University)

  • Rui Ning

    (Stanford University)

  • Huaxin Gong

    (Stanford University)

  • Insang You

    (Stanford University)

  • Yu Zheng

    (Stanford University)

  • Zhitao Zhang

    (Stanford University)

  • Jeffrey B.-H. Tok

    (Stanford University)

  • Xiaodong Chen

    (Nanyang Technological University)

  • Zhenan Bao

    (Stanford University)

Abstract

Skin-like intrinsically stretchable soft electronic devices are essential to realize next-generation remote and preventative medicine for advanced personal healthcare1–4. The recent development of intrinsically stretchable conductors and semiconductors has enabled highly mechanically robust and skin-conformable electronic circuits or optoelectronic devices2,5–10. However, their operating frequencies have been limited to less than 100 hertz, which is much lower than that required for many applications. Here we report intrinsically stretchable diodes—based on stretchable organic and nanomaterials—capable of operating at a frequency as high as 13.56 megahertz. This operating frequency is high enough for the wireless operation of soft sensors and electrochromic display pixels using radiofrequency identification in which the base-carrier frequency is 6.78 megahertz or 13.56 megahertz. This was achieved through a combination of rational material design and device engineering. Specifically, we developed a stretchable anode, cathode, semiconductor and current collector that can satisfy the strict requirements for high-frequency operation. Finally, we show the operational feasibility of our diode by integrating it with a stretchable sensor, electrochromic display pixel and antenna to realize a stretchable wireless tag. This work is an important step towards enabling enhanced functionalities and capabilities for skin-like wearable electronics.

Suggested Citation

  • Naoji Matsuhisa & Simiao Niu & Stephen J. K. O’Neill & Jiheong Kang & Yuto Ochiai & Toru Katsumata & Hung-Chin Wu & Minoru Ashizawa & Ging-Ji Nathan Wang & Donglai Zhong & Xuelin Wang & Xiwen Gong & R, 2021. "High-frequency and intrinsically stretchable polymer diodes," Nature, Nature, vol. 600(7888), pages 246-252, December.
  • Handle: RePEc:nat:nature:v:600:y:2021:i:7888:d:10.1038_s41586-021-04053-6
    DOI: 10.1038/s41586-021-04053-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-04053-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-04053-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang Li & Nan Li & Wei Liu & Aleksander Prominski & Seounghun Kang & Yahao Dai & Youdi Liu & Huawei Hu & Shinya Wai & Shilei Dai & Zhe Cheng & Qi Su & Ping Cheng & Chen Wei & Lihua Jin & Jeffrey A. Hu, 2023. "Achieving tissue-level softness on stretchable electronics through a generalizable soft interlayer design," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Nan Gan & Xin Zou & Zhao Qian & Anqi Lv & Lan Wang & Huili Ma & Hu-Jun Qian & Long Gu & Zhongfu An & Wei Huang, 2024. "Stretchable phosphorescent polymers by multiphase engineering," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Junpeng Zeng & Daowei He & Jingsi Qiao & Yating Li & Li Sun & Weisheng Li & Jiacheng Xie & Si Gao & Lijia Pan & Peng Wang & Yong Xu & Yun Li & Hao Qiu & Yi Shi & Jian-Bin Xu & Wei Ji & Xinran Wang, 2023. "Ultralow contact resistance in organic transistors via orbital hybridization," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Hung-Chin Wu & Shayla Nikzad & Chenxin Zhu & Hongping Yan & Yang Li & Weijun Niu & James R. Matthews & Jie Xu & Naoji Matsuhisa & Prajwal Kammardi Arunachala & Reza Rastak & Christian Linder & Yu-Qing, 2023. "Highly stretchable polymer semiconductor thin films with multi-modal energy dissipation and high relative stretchability," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:600:y:2021:i:7888:d:10.1038_s41586-021-04053-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.