IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-024-54809-7.html
   My bibliography  Save this article

NSm is a critical determinant for bunyavirus transmission between vertebrate and mosquito hosts

Author

Listed:
  • Selim Terhzaz

    (MRC-University of Glasgow Centre for Virus Research)

  • David Kerrigan

    (MRC-University of Glasgow Centre for Virus Research)

  • Floriane Almire

    (MRC-University of Glasgow Centre for Virus Research)

  • Agnieszka M. Szemiel

    (MRC-University of Glasgow Centre for Virus Research)

  • Joseph Hughes

    (MRC-University of Glasgow Centre for Virus Research)

  • Jean-Philippe Parvy

    (MRC-University of Glasgow Centre for Virus Research)

  • Massimo Palmarini

    (MRC-University of Glasgow Centre for Virus Research)

  • Alain Kohl

    (MRC-University of Glasgow Centre for Virus Research
    Liverpool School of Tropical Medicine)

  • Xiaohong Shi

    (MRC-University of Glasgow Centre for Virus Research)

  • Emilie Pondeville

    (MRC-University of Glasgow Centre for Virus Research)

Abstract

Bunyavirales is a very large order including viruses infecting a variety of taxonomic groups such as arthropods, vertebrates, plants, and protozoa. Some bunyaviruses are transmitted between vertebrate hosts by blood-sucking arthropods and cause major diseases in humans and animals. It is not understood why only some bunyaviruses have evolved the capacity to be transmitted by arthropod vectors. Here we show that only vector-borne bunyaviruses express a non-structural protein, NSm, whose function has so far remained largely elusive. Using as experimental system Bunyamwera virus (BUNV) and its invertebrate host, Aedes aegypti, we show that NSm is dispensable for viral replication in mosquito cells in vitro but is absolutely required for successful infection in the female mosquito following a blood meal. More specifically, NSm is required for cell-to-cell spread and egress from the mosquito midgut, a known barrier to viral infection. Notably, the requirement for NSm is specific to the midgut; bypassing this barrier by experimental intrathoracic infection of the mosquito eliminates the necessity of NSm for virus spread in other tissues, including the salivary glands. Overall, we unveiled a key evolutionary process that allows the transmission of vector-borne bunyaviruses between arthropod and vertebrate hosts.

Suggested Citation

  • Selim Terhzaz & David Kerrigan & Floriane Almire & Agnieszka M. Szemiel & Joseph Hughes & Jean-Philippe Parvy & Massimo Palmarini & Alain Kohl & Xiaohong Shi & Emilie Pondeville, 2025. "NSm is a critical determinant for bunyavirus transmission between vertebrate and mosquito hosts," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-54809-7
    DOI: 10.1038/s41467-024-54809-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54809-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54809-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yusuf Amuda Tajudeen & Habeebullah Jayeola Oladipo & Iyiola Olatunji Oladunjoye & Rashidat Onyinoyi Yusuf & Hammed Sodiq & Abass Olawale Omotosho & Damilola Samuel Adesuyi & Sodiq Inaolaji Yusuff & Mo, 2022. "Emerging Arboviruses of Public Health Concern in Africa: Priorities for Future Research and Control Strategies," Challenges, MDPI, vol. 13(2), pages 1-11, November.
    2. David Weetman & Basile Kamgang & Athanase Badolo & Catherine L. Moyes & Freya M. Shearer & Mamadou Coulibaly & João Pinto & Louis Lambrechts & Philip J. McCall, 2018. "Aedes Mosquitoes and Aedes -Borne Arboviruses in Africa: Current and Future Threats," IJERPH, MDPI, vol. 15(2), pages 1-20, January.
    3. Camilo Mora & Tristan McKenzie & Isabella M. Gaw & Jacqueline M. Dean & Hannah Hammerstein & Tabatha A. Knudson & Renee O. Setter & Charlotte Z. Smith & Kira M. Webster & Jonathan A. Patz & Erik C. Fr, 2022. "Over half of known human pathogenic diseases can be aggravated by climate change," Nature Climate Change, Nature, vol. 12(9), pages 869-875, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joseph L.-H. Tsui & Rosario Evans Pena & Monika Moir & Rhys P. D. Inward & Eduan Wilkinson & James Emmanuel San & Jenicca Poongavanan & Sumali Bajaj & Bernardo Gutierrez & Abhishek Dasgupta & Tulio Ol, 2024. "Impacts of climate change-related human migration on infectious diseases," Nature Climate Change, Nature, vol. 14(8), pages 793-802, August.
    2. Evelyn E. Esosuakpo & Sunday I. Efe & Onome D. Awaritefe, 2023. "The Effects of Climate on the Occurrence of Diarrhoea in South-South Nigeria," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 7(11), pages 1067-1081, November.
    3. Chang Liu & Jingyi Ouyang & Jinshan Yan & Lina Tang, 2023. "Landsenses Ecology: A New Idea for Watershed Ecology Restoration," IJERPH, MDPI, vol. 20(4), pages 1-12, February.
    4. William Brock & Anastasios Xepapadeas, 2023. "Natural world preservation and infectious diseases: Land-use, climate change and innovation," DEOS Working Papers 2319, Athens University of Economics and Business.
    5. Habeebullah Jayeola Oladipo & Yusuf Amuda Tajudeen & Iyiola Olatunji Oladunjoye & Sheriff Taye Mustapha & Yusuff Inaolaji Sodiq & Rashidat Onyinoyi Yusuf & Oluwaseyi Muyiwa Egbewande & Abdulbasit Opey, 2023. "Adopting a Statistical, Mechanistic, Integrated Surveillance, Thermal Biology, and Holistic (SMITH) Approach for Arbovirus Control in a Changing Climate: A Review of Evidence," Challenges, MDPI, vol. 14(1), pages 1-12, January.
    6. Yahui Zhang & Jianfeng Li & Siqi Liu & Jizhe Zhou, 2024. "Spatiotemporal Effects and Optimization Strategies of Land-Use Carbon Emissions at the County Scale: A Case Study of Shaanxi Province, China," Sustainability, MDPI, vol. 16(10), pages 1-20, May.
    7. Sabina Moser Tralamazza & Emile Gluck-Thaler & Alice Feurtey & Daniel Croll, 2024. "Copy number variation introduced by a massive mobile element facilitates global thermal adaptation in a fungal wheat pathogen," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    8. Guo, Xiaohong & Tu, Yongqian, 2023. "How digital finance affects carbon intensity–The moderating role of financial supervision," Finance Research Letters, Elsevier, vol. 55(PA).
    9. Luba Pascoe & Thomas Clemen & Karen Bradshaw & Devotha Nyambo, 2022. "Review of Importance of Weather and Environmental Variables in Agent-Based Arbovirus Models," IJERPH, MDPI, vol. 19(23), pages 1-24, November.
    10. Hao Lv & Beibei Shi & Nan Li & Rong Kang, 2022. "Intelligent Manufacturing and Carbon Emissions Reduction: Evidence from the Use of Industrial Robots in China," IJERPH, MDPI, vol. 19(23), pages 1-20, November.
    11. Delprato, Marcos & Shephard, Daniel, 2024. "Climate change and its impact on education completion rates across four sub-Saharan African countries: A non-parametric approach at the community level," International Journal of Educational Development, Elsevier, vol. 110(C).
    12. Aguiar, Raphael & Keil, Roger & Wiktorowicz, Mary, 2024. "The urban political ecology of antimicrobial resistance: A critical lens on integrative governance," Social Science & Medicine, Elsevier, vol. 348(C).
    13. Ghislain T. Tepa-Yotto & Henri E. Z. Tonnang & Stephen Yeboah & Michael Yao Osae & Awudu Amadu Gariba & Mustapha Dalaa & Faustina Obeng Adomaa & Osman Tahidu Damba & Reginald Kyere & Fidèle T. Moutoua, 2024. "Implementation Outline of Climate-Smart One Health: A System-Thinking Approach," Sustainability, MDPI, vol. 16(15), pages 1-22, August.
    14. Yidan Wang & Ying Xu & Chee Wah Tan & Longliang Qiao & Wan Ni Chia & Hongyi Zhang & Qin Huang & Zhenqiang Deng & Ziwei Wang & Xi Wang & Xurui Shen & Canyu Liu & Rongjuan Pei & Yuanxiao Liu & Shuai Xue, 2022. "Engineering antiviral immune-like systems for autonomous virus detection and inhibition in mice," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    15. Rory Gibb & Felipe J. Colón-González & Phan Trong Lan & Phan Thi Huong & Vu Sinh Nam & Vu Trong Duoc & Do Thai Hung & Nguyễn Thanh Dong & Vien Chinh Chien & Ly Thi Thuy Trang & Do Kien Quoc & Tran Min, 2023. "Interactions between climate change, urban infrastructure and mobility are driving dengue emergence in Vietnam," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    16. Yusuf Amuda Tajudeen & Habeebullah Jayeola Oladipo & Iyiola Olatunji Oladunjoye & Rashidat Onyinoyi Yusuf & Hammed Sodiq & Abass Olawale Omotosho & Damilola Samuel Adesuyi & Sodiq Inaolaji Yusuff & Mo, 2022. "Emerging Arboviruses of Public Health Concern in Africa: Priorities for Future Research and Control Strategies," Challenges, MDPI, vol. 13(2), pages 1-11, November.
    17. Stern, Nicholas & Lankes, Hans Peter & Macquarie, Rob & Soubeyran, Éléonore, 2024. "The relationship between climate action and poverty reduction," LSE Research Online Documents on Economics 121231, London School of Economics and Political Science, LSE Library.
    18. Anne Christine Lusk & Xin Li & Qiming Liu, 2023. "If the Government Pays for Full Home-Charger Installation, Would Affordable-Housing and Middle-Income Residents Buy Electric Vehicles?," Sustainability, MDPI, vol. 15(5), pages 1-26, March.
    19. Zhao, Congyu & Dong, Kangyin & Lee, Chien-Chiang, 2024. "Carbon lock-in endgame: Can energy trilemma eradication contribute to decarbonization?," Energy, Elsevier, vol. 293(C).
    20. Mahin Al Nahian, 2023. "Public Health Impact and Health System Preparedness within a Changing Climate in Bangladesh: A Scoping Review," Challenges, MDPI, vol. 14(1), pages 1-28, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-54809-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.