IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35425-9.html
   My bibliography  Save this article

Engineering antiviral immune-like systems for autonomous virus detection and inhibition in mice

Author

Listed:
  • Yidan Wang

    (East China Normal University
    Chongqing Institute of East China Normal University)

  • Ying Xu

    (East China Normal University)

  • Chee Wah Tan

    (Duke-NUS Medical School)

  • Longliang Qiao

    (East China Normal University)

  • Wan Ni Chia

    (Duke-NUS Medical School)

  • Hongyi Zhang

    (Tongji University)

  • Qin Huang

    (East China Normal University)

  • Zhenqiang Deng

    (East China Normal University)

  • Ziwei Wang

    (East China Normal University)

  • Xi Wang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xurui Shen

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Canyu Liu

    (University of Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Rongjuan Pei

    (Chinese Academy of Sciences)

  • Yuanxiao Liu

    (East China Normal University)

  • Shuai Xue

    (East China Normal University
    ETH Zurich)

  • Deqiang Kong

    (East China Normal University)

  • Danielle E. Anderson

    (Duke-NUS Medical School)

  • Fengfeng Cai

    (Tongji University)

  • Peng Zhou

    (Chinese Academy of Sciences)

  • Lin-Fa Wang

    (Duke-NUS Medical School
    SingHealth Duke-NUS Global Health Institute)

  • Haifeng Ye

    (East China Normal University)

Abstract

The ongoing COVID-19 pandemic has demonstrated that viral diseases represent an enormous public health and economic threat to mankind and that individuals with compromised immune systems are at greater risk of complications and death from viral diseases. The development of broad-spectrum antivirals is an important part of pandemic preparedness. Here, we have engineer a series of designer cells which we term autonomous, intelligent, virus-inducible immune-like (ALICE) cells as sense-and-destroy antiviral system. After developing a destabilized STING-based sensor to detect viruses from seven different genera, we have used a synthetic signal transduction system to link viral detection to the expression of multiple antiviral effector molecules, including antiviral cytokines, a CRISPR-Cas9 module for viral degradation and the secretion of a neutralizing antibody. We perform a proof-of-concept study using multiple iterations of our ALICE system in vitro, followed by in vivo functionality testing in mice. We show that dual output ALICESaCas9+Ab system delivered by an AAV-vector inhibited viral infection in herpetic simplex keratitis (HSK) mouse model. Our work demonstrates that viral detection and antiviral countermeasures can be paired for intelligent sense-and-destroy applications as a flexible and innovative method against virus infection.

Suggested Citation

  • Yidan Wang & Ying Xu & Chee Wah Tan & Longliang Qiao & Wan Ni Chia & Hongyi Zhang & Qin Huang & Zhenqiang Deng & Ziwei Wang & Xi Wang & Xurui Shen & Canyu Liu & Rongjuan Pei & Yuanxiao Liu & Shuai Xue, 2022. "Engineering antiviral immune-like systems for autonomous virus detection and inhibition in mice," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35425-9
    DOI: 10.1038/s41467-022-35425-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35425-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35425-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Camilo Mora & Tristan McKenzie & Isabella M. Gaw & Jacqueline M. Dean & Hannah Hammerstein & Tabatha A. Knudson & Renee O. Setter & Charlotte Z. Smith & Kira M. Webster & Jonathan A. Patz & Erik C. Fr, 2022. "Over half of known human pathogenic diseases can be aggravated by climate change," Nature Climate Change, Nature, vol. 12(9), pages 869-875, September.
    2. Martine Aubert & Daniel E. Strongin & Pavitra Roychoudhury & Michelle A. Loprieno & Anoria K. Haick & Lindsay M. Klouser & Laurence Stensland & Meei-Li Huang & Negar Makhsous & Alexander Tait & Harsha, 2020. "Gene editing and elimination of latent herpes simplex virus in vivo," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
    3. Hiroki Ishikawa & Zhe Ma & Glen N. Barber, 2009. "STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity," Nature, Nature, vol. 461(7265), pages 788-792, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing Liu & Xia Bu & Chen Chu & Xiaoming Dai & John M. Asara & Piotr Sicinski & Gordon J. Freeman & Wenyi Wei, 2023. "PRMT1 mediated methylation of cGAS suppresses anti-tumor immunity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Joseph L.-H. Tsui & Rosario Evans Pena & Monika Moir & Rhys P. D. Inward & Eduan Wilkinson & James Emmanuel San & Jenicca Poongavanan & Sumali Bajaj & Bernardo Gutierrez & Abhishek Dasgupta & Tulio Ol, 2024. "Impacts of climate change-related human migration on infectious diseases," Nature Climate Change, Nature, vol. 14(8), pages 793-802, August.
    3. Daipayan Banerjee & Kurt Langberg & Salar Abbas & Eric Odermatt & Praveen Yerramothu & Martin Volaric & Matthew A. Reidenbach & Kathy J. Krentz & C. Dustin Rubinstein & David L. Brautigan & Tarek Abba, 2021. "A non-canonical, interferon-independent signaling activity of cGAMP triggers DNA damage response signaling," Nature Communications, Nature, vol. 12(1), pages 1-24, December.
    4. Katelyn C. Cook & Elene Tsopurashvili & Jason M. Needham & Sunnie R. Thompson & Ileana M. Cristea, 2022. "Restructured membrane contacts rewire organelles for human cytomegalovirus infection," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    5. Alex J. Pollock & Shivam A. Zaver & Joshua J. Woodward, 2020. "A STING-based biosensor affords broad cyclic dinucleotide detection within single living eukaryotic cells," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    6. Martha Triantafilou & Joshi Ramanjulu & Lee M. Booty & Gisela Jimenez-Duran & Hakan Keles & Ken Saunders & Neysa Nevins & Emma Koppe & Louise K. Modis & G. Scott Pesiridis & John Bertin & Kathy Triant, 2022. "Human rhinovirus promotes STING trafficking to replication organelles to promote viral replication," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    7. Evelyn E. Esosuakpo & Sunday I. Efe & Onome D. Awaritefe, 2023. "The Effects of Climate on the Occurrence of Diarrhoea in South-South Nigeria," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 7(11), pages 1067-1081, November.
    8. Chang Liu & Jingyi Ouyang & Jinshan Yan & Lina Tang, 2023. "Landsenses Ecology: A New Idea for Watershed Ecology Restoration," IJERPH, MDPI, vol. 20(4), pages 1-12, February.
    9. Haruka Kemmoku & Kanoko Takahashi & Kojiro Mukai & Toshiki Mori & Koichiro M. Hirosawa & Fumika Kiku & Yasunori Uchida & Yoshihiko Kuchitsu & Yu Nishioka & Masaaki Sawa & Takuma Kishimoto & Kazuma Tan, 2024. "Single-molecule localization microscopy reveals STING clustering at the trans-Golgi network through palmitoylation-dependent accumulation of cholesterol," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    10. William Brock & Anastasios Xepapadeas, 2023. "Natural world preservation and infectious diseases: Land-use, climate change and innovation," DEOS Working Papers 2319, Athens University of Economics and Business.
    11. Niranjana Natarajan & Jonathan Florentin & Ebin Johny & Hanxi Xiao & Scott Patrick O’Neil & Liqun Lei & Jixing Shen & Lee Ohayon & Aaron R. Johnson & Krithika Rao & Xiaoyun Li & Yanwu Zhao & Yingze Zh, 2024. "Aberrant mitochondrial DNA synthesis in macrophages exacerbates inflammation and atherosclerosis," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    12. Stefanie Hiltbrunner & Lena Cords & Sabrina Kasser & Sandra N. Freiberger & Susanne Kreutzer & Nora C. Toussaint & Linda Grob & Isabelle Opitz & Michael Messerli & Martin Zoche & Alex Soltermann & Mar, 2023. "Acquired resistance to anti-PD1 therapy in patients with NSCLC associates with immunosuppressive T cell phenotype," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    13. Yahui Zhang & Jianfeng Li & Siqi Liu & Jizhe Zhou, 2024. "Spatiotemporal Effects and Optimization Strategies of Land-Use Carbon Emissions at the County Scale: A Case Study of Shaanxi Province, China," Sustainability, MDPI, vol. 16(10), pages 1-20, May.
    14. Sabina Moser Tralamazza & Emile Gluck-Thaler & Alice Feurtey & Daniel Croll, 2024. "Copy number variation introduced by a massive mobile element facilitates global thermal adaptation in a fungal wheat pathogen," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    15. Guo, Xiaohong & Tu, Yongqian, 2023. "How digital finance affects carbon intensity–The moderating role of financial supervision," Finance Research Letters, Elsevier, vol. 55(PA).
    16. Hao Lv & Beibei Shi & Nan Li & Rong Kang, 2022. "Intelligent Manufacturing and Carbon Emissions Reduction: Evidence from the Use of Industrial Robots in China," IJERPH, MDPI, vol. 19(23), pages 1-20, November.
    17. Seethalakshmi Hariharan & Benjamin T. Whitfield & Christopher J. Pirozzi & Matthew S. Waitkus & Michael C. Brown & Michelle L. Bowie & David M. Irvin & Kristen Roso & Rebecca Fuller & Janell Hostettle, 2024. "Interplay between ATRX and IDH1 mutations governs innate immune responses in diffuse gliomas," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    18. Aguiar, Raphael & Keil, Roger & Wiktorowicz, Mary, 2024. "The urban political ecology of antimicrobial resistance: A critical lens on integrative governance," Social Science & Medicine, Elsevier, vol. 348(C).
    19. Ghislain T. Tepa-Yotto & Henri E. Z. Tonnang & Stephen Yeboah & Michael Yao Osae & Awudu Amadu Gariba & Mustapha Dalaa & Faustina Obeng Adomaa & Osman Tahidu Damba & Reginald Kyere & Fidèle T. Moutoua, 2024. "Implementation Outline of Climate-Smart One Health: A System-Thinking Approach," Sustainability, MDPI, vol. 16(15), pages 1-22, August.
    20. Martine Aubert & Anoria K. Haick & Daniel E. Strongin & Lindsay M. Klouser & Michelle A. Loprieno & Laurence Stensland & Tracy K. Santo & Meei-Li Huang & Ollivier Hyrien & Daniel Stone & Keith R. Jero, 2024. "Gene editing for latent herpes simplex virus infection reduces viral load and shedding in vivo," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35425-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.