IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54784-z.html
   My bibliography  Save this article

Rationally designed laterally-condensed-catalysts deliver robust activity and selectivity for ethylene production in acetylene hydrogenation

Author

Listed:
  • Zehua Li

    (Fritz-Haber Institute of the Max Planck Society)

  • Eylül Öztuna

    (Fritz-Haber Institute of the Max Planck Society
    Helmholtz-Zentrum Berlin für Materialien und Energie GmbH)

  • Katarzyna Skorupska

    (Fritz-Haber Institute of the Max Planck Society)

  • Olga V. Vinogradova

    (Fritz-Haber Institute of the Max Planck Society)

  • Afshan Jamshaid

    (Fritz-Haber Institute of the Max Planck Society)

  • Alexander Steigert

    (Helmholtz-Zentrum Berlin für Materialien und Energie GmbH)

  • Christian Rohner

    (Fritz-Haber Institute of the Max Planck Society)

  • Maria Dimitrakopoulou

    (Fritz-Haber Institute of the Max Planck Society)

  • Mauricio J. Prieto

    (Fritz-Haber Institute of the Max Planck Society)

  • Christian Kunkel

    (Fritz-Haber Institute of the Max Planck Society)

  • Matus Stredansky

    (Fritz-Haber Institute of the Max Planck Society)

  • Pierre Kube

    (Fritz-Haber Institute of the Max Planck Society)

  • Michael Götte

    (Helmholtz-Zentrum Berlin für Materialien und Energie GmbH)

  • Alexandra M. Dudzinski

    (Fritz-Haber Institute of the Max Planck Society)

  • Frank Girgsdies

    (Fritz-Haber Institute of the Max Planck Society)

  • Sabine Wrabetz

    (Fritz-Haber Institute of the Max Planck Society)

  • Wiebke Frandsen

    (Fritz-Haber Institute of the Max Planck Society)

  • Raoul Blume

    (Fritz-Haber Institute of the Max Planck Society
    Max-Planck-Institute for Chemical Energy Conversion)

  • Patrick Zeller

    (Fritz-Haber Institute of the Max Planck Society
    Helmholtz-Zentrum Berlin für Materialien und Energie GmbH)

  • Martin Muske

    (Helmholtz-Zentrum Berlin für Materialien und Energie GmbH)

  • Daniel Delgado

    (Fritz-Haber Institute of the Max Planck Society)

  • Shan Jiang

    (Fritz-Haber Institute of the Max Planck Society)

  • Franz-Philipp Schmidt

    (Fritz-Haber Institute of the Max Planck Society)

  • Tobias Köhler

    (Helmholtz-Zentrum Berlin für Materialien und Energie GmbH)

  • Manuela Arztmann

    (Helmholtz-Zentrum Berlin für Materialien und Energie GmbH)

  • Anna Efimenko

    (Helmholtz-Zentrum Berlin für Materialien und Energie GmbH)

  • Johannes Frisch

    (Helmholtz-Zentrum Berlin für Materialien und Energie GmbH)

  • Tathiana M. Kokumai

    (Helmholtz-Zentrum Berlin für Materialien und Energie GmbH)

  • Raul Garcia-Diez

    (Helmholtz-Zentrum Berlin für Materialien und Energie GmbH)

  • Marcus Bär

    (Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
    Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (HI ERN)
    Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU))

  • Adnan Hammud

    (Fritz-Haber Institute of the Max Planck Society)

  • Jutta Kröhnert

    (Fritz-Haber Institute of the Max Planck Society)

  • Annette Trunschke

    (Fritz-Haber Institute of the Max Planck Society)

  • Christoph Scheurer

    (Fritz-Haber Institute of the Max Planck Society)

  • Thomas Schmidt

    (Fritz-Haber Institute of the Max Planck Society)

  • Thomas Lunkenbein

    (Fritz-Haber Institute of the Max Planck Society)

  • Daniel Amkreutz

    (Helmholtz-Zentrum Berlin für Materialien und Energie GmbH)

  • Helmut Kuhlenbeck

    (Fritz-Haber Institute of the Max Planck Society)

  • Vanessa J. Bukas

    (Fritz-Haber Institute of the Max Planck Society)

  • Axel Knop-Gericke

    (Fritz-Haber Institute of the Max Planck Society
    Max-Planck-Institute for Chemical Energy Conversion)

  • Rutger Schlatmann

    (Helmholtz-Zentrum Berlin für Materialien und Energie GmbH)

  • Karsten Reuter

    (Fritz-Haber Institute of the Max Planck Society)

  • Beatriz Roldan Cuenya

    (Fritz-Haber Institute of the Max Planck Society)

  • Robert Schlögl

    (Fritz-Haber Institute of the Max Planck Society)

Abstract

Future carbon management strategies require storage in elemental form, achievable through a sequence of CO2 hydrogenation reactions. Hydrogen is recycled from molecular intermediates by dehydrogenation, and side product acetylene selectively hydrogenated to ethylene. Existing Pd alloy catalysts for gas purification underperform in concentrated feeds, necessitating novel concepts. Atomistic simulations unveil superior selectivity of Pd:C solid solutions that optimize chemisorption energies and preclude sub-surface hydrides, verified here with model thin films. Multiple design criteria deduced from conventional catalysts facilitate synthesizing a self-repairing Pd:C system of a laterally condensed catalyst (LCC). A Pd layer prepared on a designated SiO2 buffer layer enables control of reactive interface, sub-surface volume and extended functional interface towards the buffer. Function and metric are supervised by operando micro-spectroscopy. This catalyst design shows, ethylene productivity >1 kmolC2H4/gPd/hour is reproducibly achieved and benchmarked against known catalysts. Photovoltaics deposition technologies enable scalability on real-world substrates saving active metal. A design-of-experiment approach demonstrates the improvement potential of the LCC approach.

Suggested Citation

  • Zehua Li & Eylül Öztuna & Katarzyna Skorupska & Olga V. Vinogradova & Afshan Jamshaid & Alexander Steigert & Christian Rohner & Maria Dimitrakopoulou & Mauricio J. Prieto & Christian Kunkel & Matus St, 2024. "Rationally designed laterally-condensed-catalysts deliver robust activity and selectivity for ethylene production in acetylene hydrogenation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54784-z
    DOI: 10.1038/s41467-024-54784-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54784-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54784-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yalin Guo & Yike Huang & Bin Zeng & Bing Han & Mohcin AKRI & Ming Shi & Yue Zhao & Qinghe Li & Yang Su & Lin Li & Qike Jiang & Yi-Tao Cui & Lei Li & Rengui Li & Botao Qiao & Tao Zhang, 2022. "Photo-thermo semi-hydrogenation of acetylene on Pd1/TiO2 single-atom catalyst," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Yiming Niu & Xing Huang & Yongzhao Wang & Ming Xu & Junnan Chen & Shuliang Xu & Marc-Georg Willinger & Wei Zhang & Min Wei & Bingsen Zhang, 2020. "Manipulating interstitial carbon atoms in the nickel octahedral site for highly efficient hydrogenation of alkyne," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    3. Davide Albani & Masoud Shahrokhi & Zupeng Chen & Sharon Mitchell & Roland Hauert & Núria López & Javier Pérez-Ramírez, 2018. "Selective ensembles in supported palladium sulfide nanoparticles for alkyne semi-hydrogenation," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huan Chen & Lulu Li & Zhi-Jian Zhao & Bing Yang & Yafeng Zhang & Xiaoyan Liu & Qingqing Gu & Zhounan Yu & Xiaofeng Yang & Jinlong Gong & Aiqin Wang & Tao Zhang, 2024. "Co-infiltration and dynamic formation of Pd3ZnCx intermetallic carbide by syngas boosting selective hydrogenation of acetylene," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Yu Liu & Xuchun Wang & Xiaodong Li & Zuyang Ye & Tsun-Kong Sham & Panpan Xu & Muhan Cao & Qiao Zhang & Yadong Yin & Jinxing Chen, 2024. "Universal and scalable synthesis of photochromic single-atom catalysts for plastic recycling," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Zhongzhe Wei & Zijiang Zhao & Chenglong Qiu & Songtao Huang & Zihao Yao & Mingxuan Wang & Yi Chen & Yue Lin & Xing Zhong & Xiaonian Li & Jianguo Wang, 2023. "Tripodal Pd metallenes mediated by Nb2C MXenes for boosting alkynes semihydrogenation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Lei Zhang & Zhe Chen & Zhenpeng Liu & Jun Bu & Wenxiu Ma & Chen Yan & Rui Bai & Jin Lin & Qiuyu Zhang & Junzhi Liu & Tao Wang & Jian Zhang, 2021. "Efficient electrocatalytic acetylene semihydrogenation by electron–rich metal sites in N–heterocyclic carbene metal complexes," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    5. Zhang, Shengen & He, Xuefeng & Ding, Yunji & Shi, Zhisheng & Wu, Boyu, 2024. "Supply and demand of platinum group metals and strategies for sustainable management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 204(C).
    6. Luyao Guo & Kaixuan Zhuge & Siyang Yan & Shiyi Wang & Jia Zhao & Saisai Wang & Panzhe Qiao & Jiaxu Liu & Xiaoling Mou & Hejun Zhu & Ziang Zhao & Li Yan & Ronghe Lin & Yunjie Ding, 2023. "Defect-driven nanostructuring of low-nuclearity Pt-Mo ensembles for continuous gas-phase formic acid dehydrogenation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Qiaoxi Liu & Wenjie Xu & Hao Huang & Hongwei Shou & Jingxiang Low & Yitao Dai & Wanbing Gong & Youyou Li & Delong Duan & Wenqing Zhang & Yawen Jiang & Guikai Zhang & Dengfeng Cao & Kecheng Wei & Ran L, 2024. "Spectroscopic visualization of reversible hydrogen spillover between palladium and metal–organic frameworks toward catalytic semihydrogenation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Wangwang Zhang & Kelechi Uwakwe & Jingting Hu & Yan Wei & Juntong Zhu & Wu Zhou & Chao Ma & Liang Yu & Rui Huang & Dehui Deng, 2024. "Ambient-condition acetylene hydrogenation to ethylene over WS2-confined atomic Pd sites," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54784-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.