IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53774-5.html
   My bibliography  Save this article

Universal and scalable synthesis of photochromic single-atom catalysts for plastic recycling

Author

Listed:
  • Yu Liu

    (Soochow University)

  • Xuchun Wang

    (Soochow University
    London)

  • Xiaodong Li

    (Weinberg 2)

  • Zuyang Ye

    (University of California)

  • Tsun-Kong Sham

    (London)

  • Panpan Xu

    (Chinese Academy of Sciences)

  • Muhan Cao

    (Soochow University)

  • Qiao Zhang

    (Soochow University)

  • Yadong Yin

    (University of California)

  • Jinxing Chen

    (Soochow University)

Abstract

Metal oxide nanostructures with single-atomic heteroatom incorporation are of interest for many applications. However, a universal and scalable synthesis approach with high heteroatom concentrations represents a formidable challenge, primarily due to the pronounced structural disparities between Mhetero–O and Msub–O units. Here, focusing on TiO2 as the exemplified substrate, we present a diethylene glycol-assisted synthetic platform tailored for the controlled preparation of a library of M1-TiO2 nanostructures, encompassing 15 distinct unary M1-TiO2 nanostructures, along with two types of binary and ternary composites. Our approach capitalizes on the unique properties of diethylene glycol, affording precise kinetic control by passivating the hydrolytic activity of heteroatom and simultaneously achieving thermodynamic control by introducing short-range order structures to dissipate the free energy associated with heteroatom incorporation. The M1-TiO2 nanostructures, characterized by distinctive and abundant M–O–Ti units on the surface, exhibit high efficiency in photochromic photothermal catalysis toward recycling waste polyesters. This universal synthetic platform contributes to the preparation of materials with broad applicability and significance across catalysis, energy conversion, and biomedicine.

Suggested Citation

  • Yu Liu & Xuchun Wang & Xiaodong Li & Zuyang Ye & Tsun-Kong Sham & Panpan Xu & Muhan Cao & Qiao Zhang & Yadong Yin & Jinxing Chen, 2024. "Universal and scalable synthesis of photochromic single-atom catalysts for plastic recycling," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53774-5
    DOI: 10.1038/s41467-024-53774-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53774-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53774-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wenhao Sun & Daniil A. Kitchaev & Denis Kramer & Gerbrand Ceder, 2019. "Non-equilibrium crystallization pathways of manganese oxides in aqueous solution," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    2. Yalin Guo & Yike Huang & Bin Zeng & Bing Han & Mohcin AKRI & Ming Shi & Yue Zhao & Qinghe Li & Yang Su & Lin Li & Qike Jiang & Yi-Tao Cui & Lei Li & Rengui Li & Botao Qiao & Tao Zhang, 2022. "Photo-thermo semi-hydrogenation of acetylene on Pd1/TiO2 single-atom catalyst," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Ji Wei Sun & Xuefeng Wu & Peng Fei Liu & Jiacheng Chen & Yuanwei Liu & Zhen Xin Lou & Jia Yue Zhao & Hai Yang Yuan & Aiping Chen & Xue Lu Wang & Minghui Zhu & Sheng Dai & Hua Gui Yang, 2023. "Scalable synthesis of coordinatively unsaturated metal-nitrogen sites for large-scale CO2 electrolysis," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Kaipeng Liu & Xintian Zhao & Guoqing Ren & Tao Yang & Yujing Ren & Adam Fraser Lee & Yang Su & Xiaoli Pan & Jingcai Zhang & Zhiqiang Chen & Jingyi Yang & Xiaoyan Liu & Tong Zhou & Wei Xi & Jun Luo & C, 2020. "Strong metal-support interaction promoted scalable production of thermally stable single-atom catalysts," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    5. Pengfei Zhang & Hanfeng Lu & Ying Zhou & Li Zhang & Zili Wu & Shize Yang & Hongliang Shi & Qiulian Zhu & Yinfei Chen & Sheng Dai, 2015. "Mesoporous MnCeOx solid solutions for low temperature and selective oxidation of hydrocarbons," Nature Communications, Nature, vol. 6(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Panpan Xu & Xingyu Guo & Binglei Jiao & Jinxing Chen & Minghao Zhang & Haodong Liu & Xiaolu Yu & Maura Appleberry & Zhenzhen Yang & Hongpeng Gao & Fan Yang & Xuefei Weng & Yanbin Shen & Jing Gu & Ying, 2024. "Proton-exchange induced reactivity in layered oxides for lithium-ion batteries," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Zhongzhe Wei & Zijiang Zhao & Chenglong Qiu & Songtao Huang & Zihao Yao & Mingxuan Wang & Yi Chen & Yue Lin & Xing Zhong & Xiaonian Li & Jianguo Wang, 2023. "Tripodal Pd metallenes mediated by Nb2C MXenes for boosting alkynes semihydrogenation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Minjie Zhao & Chengeng Li & Daviel Gómez & Francisco Gonell & Vlad Martin Diaconescu & Laura Simonelli & Miguel Lopez Haro & Jose Juan Calvino & Debora Motta Meira & Patricia Concepción & Avelino Corm, 2023. "Low-temperature hydroformylation of ethylene by phosphorous stabilized Rh sites in a one-pot synthesized Rh-(O)-P-MFI zeolite," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Xiongwei Zhong & Xiao Xiao & Qizhen Li & Mengtian Zhang & Zhitong Li & Leyi Gao & Biao Chen & Zhiyang Zheng & Qingjin Fu & Xingzhu Wang & Guangmin Zhou & Baomin Xu, 2024. "Understanding the active site in chameleon-like bifunctional catalyst for practical rechargeable zinc-air batteries," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Yuanfeng Li & Tian Qin & Yuechang Wei & Jing Xiong & Peng Zhang & Kezhen Lai & Hongjie Chi & Xi Liu & Liwei Chen & Xiaolin Yu & Zhen Zhao & Lina Li & Jian Liu, 2023. "A single site ruthenium catalyst for robust soot oxidation without platinum or palladium," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Wangwang Zhang & Kelechi Uwakwe & Jingting Hu & Yan Wei & Juntong Zhu & Wu Zhou & Chao Ma & Liang Yu & Rui Huang & Dehui Deng, 2024. "Ambient-condition acetylene hydrogenation to ethylene over WS2-confined atomic Pd sites," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Zehua Li & Eylül Öztuna & Katarzyna Skorupska & Olga V. Vinogradova & Afshan Jamshaid & Alexander Steigert & Christian Rohner & Maria Dimitrakopoulou & Mauricio J. Prieto & Christian Kunkel & Matus St, 2024. "Rationally designed laterally-condensed-catalysts deliver robust activity and selectivity for ethylene production in acetylene hydrogenation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53774-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.