Defect-driven nanostructuring of low-nuclearity Pt-Mo ensembles for continuous gas-phase formic acid dehydrogenation
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-023-42759-5
Download full text from publisher
References listed on IDEAS
- Davide Albani & Masoud Shahrokhi & Zupeng Chen & Sharon Mitchell & Roland Hauert & Núria López & Javier Pérez-Ramírez, 2018. "Selective ensembles in supported palladium sulfide nanoparticles for alkyne semi-hydrogenation," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
- Tingting Hou & Qiquan Luo & Qi Li & Hualu Zu & Peixin Cui & Siwei Chen & Yue Lin & Jiajia Chen & Xusheng Zheng & Wenkun Zhu & Shuquan Liang & Jinlong Yang & Liangbing Wang, 2020. "Modulating oxygen coverage of Ti3C2Tx MXenes to boost catalytic activity for HCOOH dehydrogenation," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
- Dmitri A. Bulushev, 2021. "Progress in Catalytic Hydrogen Production from Formic Acid over Supported Metal Complexes," Energies, MDPI, vol. 14(5), pages 1-14, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dmitri A. Bulushev, 2021. "Advanced Catalysis in Hydrogen Production from Formic Acid and Methanol," Energies, MDPI, vol. 14(20), pages 1-5, October.
- Davide Clematis & Daria Bellotti & Massimo Rivarolo & Loredana Magistri & Antonio Barbucci, 2023. "Hydrogen Carriers: Scientific Limits and Challenges for the Supply Chain, and Key Factors for Techno-Economic Analysis," Energies, MDPI, vol. 16(16), pages 1-31, August.
- Haifeng Shen & Huanyu Jin & Haobo Li & Herui Wang & Jingjing Duan & Yan Jiao & Shi-Zhang Qiao, 2023. "Acidic CO2-to-HCOOH electrolysis with industrial-level current on phase engineered tin sulfide," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Gromov, Nikolay V. & Medvedeva, Tatiana B. & Lukoyanov, Ivan A. & Ogorodnikova, Olga L. & Panchenko, Valentina N. & Parmon, Valentin N. & Timofeeva, Maria N., 2024. "Hydrolysis-oxidation of starch to formic acid in the presence of vanadium-containing molybdophosphoric heteropoly acid (H3+xPMo12-xVxO40): Effect of acidity and vanadium content on the yield of formic," Renewable Energy, Elsevier, vol. 220(C).
- Qiaoxi Liu & Wenjie Xu & Hao Huang & Hongwei Shou & Jingxiang Low & Yitao Dai & Wanbing Gong & Youyou Li & Delong Duan & Wenqing Zhang & Yawen Jiang & Guikai Zhang & Dengfeng Cao & Kecheng Wei & Ran L, 2024. "Spectroscopic visualization of reversible hydrogen spillover between palladium and metal–organic frameworks toward catalytic semihydrogenation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
- Xinchun Yang & Dmitri A. Bulushev & Jun Yang & Quan Zhang, 2022. "New Liquid Chemical Hydrogen Storage Technology," Energies, MDPI, vol. 15(17), pages 1-18, August.
- Xiaoyang Pan & Xuhui Yang & Maoqing Yu & Xiaoxiao Lu & Hao Kang & Min-Quan Yang & Qingrong Qian & Xiaojing Zhao & Shijing Liang & Zhenfeng Bian, 2023. "2D MXenes polar catalysts for multi-renewable energy harvesting applications," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Zehua Li & Eylül Öztuna & Katarzyna Skorupska & Olga V. Vinogradova & Afshan Jamshaid & Alexander Steigert & Christian Rohner & Maria Dimitrakopoulou & Mauricio J. Prieto & Christian Kunkel & Matus St, 2024. "Rationally designed laterally-condensed-catalysts deliver robust activity and selectivity for ethylene production in acetylene hydrogenation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
- Ekaterina Matus & Olga Sukhova & Ilyas Ismagilov & Mikhail Kerzhentsev & Olga Stonkus & Zinfer Ismagilov, 2021. "Hydrogen Production through Autothermal Reforming of Ethanol: Enhancement of Ni Catalyst Performance via Promotion," Energies, MDPI, vol. 14(16), pages 1-16, August.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42759-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.