IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54490-w.html
   My bibliography  Save this article

Ozone trends and their sensitivity in global megacities under the warming climate

Author

Listed:
  • Jairo Vazquez Santiago

    (National Institute of Advanced Industrial Science and Technology)

  • Hiroo Hata

    (National Institute of Advanced Industrial Science and Technology)

  • Edgar J. Martinez-Noriega

    (National Institute of Advanced Industrial Science and Technology)

  • Kazuya Inoue

    (National Institute of Advanced Industrial Science and Technology)

Abstract

Tropospheric ozone formation depends on the emissions of volatile organic compounds (VOC) and nitrogen oxides (NOx). In megacities, abundant VOC and NOx sources cause relentlessly high ozone episodes, affecting a large share of the global population. This study uses data from the Ozone Monitoring Instrument for formaldehyde (HCHO) and nitrogen dioxide (NO2) as proxy data for VOC and NOx emissions, respectively, with their ratio serving as an indicator of ozone sensitivity. Ground-level ozone (O3) reanalysis from the Copernicus Atmosphere Monitoring is used to assess the O3 trends. We evaluate changes from 2005 to 2019 and their relationship with the warming environment in 41 megacities worldwide, applying seasonal Mann-Kendall, trend decomposition methods, and Pearson correlation analysis. We reveal significant increases in global HCHO (0.1 to 0.31 × 1015 mol cm−2 year−1) and regionally varying NO2 (−0.22 to 0.07 × 1015 mol cm−2 year−1). O3 trends range from −0.31 to 0.70 ppb year−1, highlighting the relevance of precursor abundance on O3 levels. The strong correlation between precursor emissions and increasing temperature suggests that O3 will continue to rise as climate change persists.

Suggested Citation

  • Jairo Vazquez Santiago & Hiroo Hata & Edgar J. Martinez-Noriega & Kazuya Inoue, 2024. "Ozone trends and their sensitivity in global megacities under the warming climate," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54490-w
    DOI: 10.1038/s41467-024-54490-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54490-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54490-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cole, M.A. & Rayner, A.J. & Bates, J.M., 1997. "The environmental Kuznets curve: an empirical analysis," Environment and Development Economics, Cambridge University Press, vol. 2(4), pages 401-416, November.
    2. Xiao Lu & Xingpei Ye & Mi Zhou & Yuanhong Zhao & Hongjian Weng & Hao Kong & Ke Li & Meng Gao & Bo Zheng & Jintai Lin & Feng Zhou & Qiang Zhang & Dianming Wu & Lin Zhang & Yuanhang Zhang, 2021. "The underappreciated role of agricultural soil nitrogen oxide emissions in ozone pollution regulation in North China," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. Yanqin Xu & Shuai Han & Chunxiang Shi & Rui Tao & Jiaojiao Zhang & Yu Zhang & Zheng Wang, 2023. "Comparative Analysis of Three Near-Surface Air Temperature Reanalysis Datasets in Inner Mongolia Region," Sustainability, MDPI, vol. 15(17), pages 1-21, August.
    4. E. Bourtsoukidis & T. Behrendt & A. M. Yañez-Serrano & H. Hellén & E. Diamantopoulos & E. Catão & K. Ashworth & A. Pozzer & C. A. Quesada & D. L. Martins & M. Sá & A. Araujo & J. Brito & P. Artaxo & J, 2018. "Strong sesquiterpene emissions from Amazonian soils," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emrah Kocak & Hayriye Hilal Baglitas, 2022. "The path to sustainable municipal solid waste management: Do human development, energy efficiency, and income inequality matter?," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(6), pages 1947-1962, December.
    2. Nicole Grunewald & Inmaculada Martínez-Zarzoso, 2009. "Driving Factors of Carbon Dioxide Emissions and the Impact from Kyoto Protocol," Ibero America Institute for Econ. Research (IAI) Discussion Papers 190, Ibero-America Institute for Economic Research.
    3. Liddle, Brantley, 2013. "Population, Affluence, and Environmental Impact Across Development: Evidence from Panel Cointegration Modeling," MPRA Paper 52088, University Library of Munich, Germany.
    4. George Halkos & Iacovos Psarianos, 2016. "Exploring the effect of including the environment in the neoclassical growth model," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 18(3), pages 339-358, July.
    5. Daniel Fiorino, 2011. "Explaining national environmental performance: approaches, evidence, and implications," Policy Sciences, Springer;Society of Policy Sciences, vol. 44(4), pages 367-389, November.
    6. Saidi Kais & Ben Mbarek Mounir, 2017. "Causal interactions between environmental degradation, renewable energy, nuclear energy and real GDP: a dynamic panel data approach," Environment Systems and Decisions, Springer, vol. 37(1), pages 51-67, March.
    7. Olimpia Neagu, 2019. "The Link between Economic Complexity and Carbon Emissions in the European Union Countries: A Model Based on the Environmental Kuznets Curve (EKC) Approach," Sustainability, MDPI, vol. 11(17), pages 1-27, August.
    8. Pei-Ing Wu & Je-Liang Liou & Hung-Yi Chang, 2015. "Alternative exploration of EKC for $$\hbox {CO}_{2}$$ CO 2 emissions: inclusion of meta-technical ratio in quantile regression model," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(1), pages 57-73, January.
    9. Thomas Longden, 2014. "Going Forward by Looking Backwards on the Environmental Kuznets Curve: an Analysis of CFCs, CO2 and the Montreal and Kyoto Protocols," Working Papers 2014.74, Fondazione Eni Enrico Mattei.
    10. Sichen Wang & Xi Mu & Peng Jiang & Yanfeng Huo & Li Zhu & Zhiqiang Zhu & Yanlan Wu, 2022. "New Deep Learning Model to Estimate Ozone Concentrations Found Worrying Exposure Level over Eastern China," IJERPH, MDPI, vol. 19(12), pages 1-15, June.
    11. Canfei He & Fenghua Pan & Yan Yan, 2012. "Is Economic Transition Harmful to China’s Urban Environment? Evidence from Industrial Air Pollution in Chinese Cities," Urban Studies, Urban Studies Journal Limited, vol. 49(8), pages 1767-1790, June.
    12. Hettige, Hemamala & Mani, Muthukumara & Wheeler, David, 2000. "Industrial pollution in economic development: the environmental Kuznets curve revisited," Journal of Development Economics, Elsevier, vol. 62(2), pages 445-476, August.
    13. Xinyu Zhang & Mufei Shen & Yupeng Luan & Weijia Cui & Xueqin Lin, 2022. "Spatial Evolutionary Characteristics and Influencing Factors of Urban Industrial Carbon Emission in China," IJERPH, MDPI, vol. 19(18), pages 1-21, September.
    14. Wang, Sophie Xuefei & Fu, Yu Benjamin & Zhang, Zhe George, 2015. "Population growth and the environmental Kuznets curve," China Economic Review, Elsevier, vol. 36(C), pages 146-165.
    15. Dongchuan Wang & Wengang Chen & Wei Wei & Broxton W. Bird & Lihui Zhang & Mengqin Sang & Qianqian Wang, 2016. "Research on the Relationship between Urban Development Intensity and Eco-Environmental Stresses in Bohai Rim Coastal Area, China," Sustainability, MDPI, vol. 8(4), pages 1-15, April.
    16. Md Danesh Miah & Md Farhad Hossain Masum & Masao Koike & Shalina Akther & Nur Muhammed, 2011. "Environmental Kuznets Curve: the case of Bangladesh for waste emission and suspended particulate matter," Environment Systems and Decisions, Springer, vol. 31(1), pages 59-66, March.
    17. Jie HE, 2005. "Economic Determinants for China’s Industrial SO2 Emission: Reduced vs. Structural form and the role of international trade," Working Papers 200505, CERDI.
    18. Datu Buyung Agusdinata & Rimjhim Aggarwal & Xiaosu Ding, 2021. "Economic growth, inequality, and environment nexus: using data mining techniques to unravel archetypes of development trajectories," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 6234-6258, April.
    19. Stavins, Robert, 2004. "Can an Effective Global Climate Treaty be Based on Sound Science, Rational Economics, and Pragmatic Politics?," Working Paper Series rwp04-020, Harvard University, John F. Kennedy School of Government.
    20. Torres-Brito, David Israel & Cruz-Aké, Salvador & Venegas-Martínez, Francisco, 2023. "Impacto de los contaminantes por gases de efecto invernadero en el crecimiento económico en 86 países (1990-2019): Sobre la curva inversa de Kuznets [Impact of the Effect of Greenhouse Gas Pollutan," MPRA Paper 119031, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54490-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.