IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54468-8.html
   My bibliography  Save this article

Autophagy modulates Arabidopsis male gametophyte fertility and controls actin organization

Author

Listed:
  • He Yan

    (South China Agricultural University
    Shaoguan University)

  • Zhen Lu

    (South China Agricultural University)

  • Xiaojuan Du

    (South China Agricultural University)

  • Zhengtao You

    (South China Agricultural University)

  • Mingkang Yang

    (South China Agricultural University
    Shaoguan University
    South China Agricultural University)

  • Nianle Li

    (South China Agricultural University)

  • Xuequan Li

    (South China Agricultural University)

  • Zailue Ni

    (South China Agricultural University)

  • Hong Wu

    (South China Agricultural University
    South China Agricultural University)

  • Xiangfeng Wang

    (China Agricultural University)

  • Lifeng Zhao

    (South China Agricultural University)

  • Hao Wang

    (South China Agricultural University
    South China Agricultural University)

Abstract

Autophagy, a crucial mechanism for cellular degradation, is regulated by conserved autophagy-related (ATG) core proteins across species. Impairments in autophagy result in significant developmental and reproductive aberrations in mammals. However, autophagy is thought to be functionally dispensable in Arabidopsis thaliana since most of the ATG mutants lack severe growth and reproductive defects. Here, we challenge this perception by unveiling a role for autophagy in male gametophyte development and fertility in Arabidopsis. A detailed re-assessment of atg5 and atg7 mutants found that reduced autophagy activity in germinated pollen accompanied by partial aberrations in sperm cell biogenesis and pollen tube growth, leading to compromised seed formation. Furthermore, we revealed autophagy modulates the spatial organization of actin filaments via targeted degradation of actin depolymerization factors ADF7 and Profilin2 in pollen grains and tubes through a key receptor, Neighbor of BRCA1 (NBR1). Our findings advance the understanding of the evolutionary conservation and diversification of autophagy in modulating male fertility in plants contrasting to mammals.

Suggested Citation

  • He Yan & Zhen Lu & Xiaojuan Du & Zhengtao You & Mingkang Yang & Nianle Li & Xuequan Li & Zailue Ni & Hong Wu & Xiangfeng Wang & Lifeng Zhao & Hao Wang, 2024. "Autophagy modulates Arabidopsis male gametophyte fertility and controls actin organization," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54468-8
    DOI: 10.1038/s41467-024-54468-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54468-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54468-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Akiko Kuma & Masahiko Hatano & Makoto Matsui & Akitsugu Yamamoto & Haruaki Nakaya & Tamotsu Yoshimori & Yoshinori Ohsumi & Takeshi Tokuhisa & Noboru Mizushima, 2004. "The role of autophagy during the early neonatal starvation period," Nature, Nature, vol. 432(7020), pages 1032-1036, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aftab Nadeem & Athar Alam & Eric Toh & Si Lhyam Myint & Zia ur Rehman & Tao Liu & Marta Bally & Anna Arnqvist & Hui Wang & Jun Zhu & Karina Persson & Bernt Eric Uhlin & Sun Nyunt Wai, 2021. "Phosphatidic acid-mediated binding and mammalian cell internalization of the Vibrio cholerae cytotoxin MakA," PLOS Pathogens, Public Library of Science, vol. 17(3), pages 1-34, March.
    2. Marika K. Kucińska & Juliette Fedry & Carmela Galli & Diego Morone & Andrea Raimondi & Tatiana Soldà & Friedrich Förster & Maurizio Molinari, 2023. "TMX4-driven LINC complex disassembly and asymmetric autophagy of the nuclear envelope upon acute ER stress," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    3. Keiji Kajiwara & Hiroshi Osaki & Steffen Greßies & Keiko Kuwata & Ju Hyun Kim & Tobias Gensch & Yoshikatsu Sato & Frank Glorius & Shigehiro Yamaguchi & Masayasu Taki, 2022. "A negative-solvatochromic fluorescent probe for visualizing intracellular distributions of fatty acid metabolites," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Shiyan Liu & Mutian Chen & Yichang Wang & Yuqing Lei & Ting Huang & Yabin Zhang & Sin Man Lam & Huihui Li & Shiqian Qi & Jia Geng & Kefeng Lu, 2023. "The ER calcium channel Csg2 integrates sphingolipid metabolism with autophagy," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    5. Odeta Meçe & Diede Houbaert & Maria-Livia Sassano & Tania Durré & Hannelore Maes & Marco Schaaf & Sanket More & Maarten Ganne & Melissa García-Caballero & Mila Borri & Jelle Verhoeven & Madhur Agrawal, 2022. "Lipid droplet degradation by autophagy connects mitochondria metabolism to Prox1-driven expression of lymphatic genes and lymphangiogenesis," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    6. Xinyu Mei & Yuan Guo & Zhangdan Xie & Yedan Zhong & Xiaofen Wu & Daichao Xu & Ying Li & Nan Liu & Zheng-Jiang Zhu, 2021. "RIPK1 regulates starvation resistance by modulating aspartate catabolism," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    7. Smita Majumder & Arlan Richardson & Randy Strong & Salvatore Oddo, 2011. "Inducing Autophagy by Rapamycin Before, but Not After, the Formation of Plaques and Tangles Ameliorates Cognitive Deficits," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-11, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54468-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.