IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54272-4.html
   My bibliography  Save this article

Nuclear localization sequence of MoHTR1, a Magnaporthe oryzae effector, for transcriptional reprogramming of immunity genes in rice

Author

Listed:
  • You-Jin Lim

    (Seoul National University
    Seoul National University)

  • Yoon-Ju Yoon

    (Seoul National University)

  • Hyunjun Lee

    (Seoul National University)

  • Gobong Choi

    (Seoul National University)

  • Seongbeom Kim

    (Seoul National University)

  • Jaeho Ko

    (Seoul National University)

  • Jea Hyeoung Kim

    (Sunchon National University)

  • Ki-Tae Kim

    (Sunchon National University
    Sunchon National University)

  • Yong-Hwan Lee

    (Seoul National University
    Seoul National University
    Seoul National University
    Seoul National University)

Abstract

Plant pathogens secrete nuclear effectors into the host nuclei to modulate the host immune system. Although several nuclear effectors of fungal pathogens have been recently reported, the molecular mechanism of NLS-associated transport vehicles of nuclear effectors and the roles of NLS in transcriptional reprogramming of host immunity genes remain enigmatic. We previously reported the MoHTR1, a nuclear effector of the rice blast fungus, Magnaporthe oryzae. MoHTR1 is translocated to rice nuclei but not in fungal nuclei. Here, we identify the core NLS (RxKK) responsible for MoHTR1’s nuclear localization. MoHTR1 is translocated in the host nucleus through interaction with rice importin α. MoHTR1 NLS empowers it to translocate the cytoplasmic effectors of M. oryzae into rice nuclei. Furthermore, other nuclear effector candidates of the blast pathogen and rice proteins which have RxKK also exhibit nuclear localization, highlighting the crucial role of RxKK in this process. We also unveil the importance of SUMOylation in the stability of MoHTR1 and translocation of MoHTR1 to host nuclei. Moreover, MoHTR1 NLS is essential for the pathogenicity of M. oryzae by reprogramming immunity-associated genes in the host. Our findings provide insights into the significance of plant-specific NLS on fungal nuclear effectors and its role in plant-pathogen interactions.

Suggested Citation

  • You-Jin Lim & Yoon-Ju Yoon & Hyunjun Lee & Gobong Choi & Seongbeom Kim & Jaeho Ko & Jea Hyeoung Kim & Ki-Tae Kim & Yong-Hwan Lee, 2024. "Nuclear localization sequence of MoHTR1, a Magnaporthe oryzae effector, for transcriptional reprogramming of immunity genes in rice," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54272-4
    DOI: 10.1038/s41467-024-54272-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54272-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54272-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Seongbeom Kim & Chi-Yeol Kim & Sook-Young Park & Ki-Tae Kim & Jongbum Jeon & Hyunjung Chung & Gobong Choi & Seomun Kwon & Jaeyoung Choi & Junhyun Jeon & Jong-Seong Jeon & Chang Hyun Khang & Seogchan K, 2020. "Two nuclear effectors of the rice blast fungus modulate host immunity via transcriptional reprogramming," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuetao Shi & Xin Xie & Yuanwen Guo & Junqi Zhang & Ziwen Gong & Kai Zhang & Jie Mei & Xinyao Xia & Haoxue Xia & Na Ning & Yutao Xiao & Qing Yang & Guo-Liang Wang & Wende Liu, 2024. "A fungal core effector exploits the OsPUX8B.2–OsCDC48-6 module to suppress plant immunity," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Ziwei Zhu & Jun Xiong & Hao Shi & Yuchen Liu & Junjie Yin & Kaiwei He & Tianyu Zhou & Liting Xu & Xiaobo Zhu & Xiang Lu & Yongyan Tang & Li Song & Qingqing Hou & Qing Xiong & Long Wang & Daihua Ye & T, 2023. "Magnaporthe oryzae effector MoSPAB1 directly activates rice Bsr-d1 expression to facilitate pathogenesis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Weiliang Zuo & Jasper R. L. Depotter & Sara Christina Stolze & Hirofumi Nakagami & Gunther Doehlemann, 2023. "A transcriptional activator effector of Ustilago maydis regulates hyperplasia in maize during pathogen-induced tumor formation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54272-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.