Robust liquid crystal semi-interpenetrating polymer network with superior energy-dissipation performance
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-024-54233-x
Download full text from publisher
References listed on IDEAS
- Takuya Ohzono & Kaoru Katoh & Hiroyuki Minamikawa & Mohand O. Saed & Eugene M. Terentjev, 2021. "Internal constraints and arrested relaxation in main-chain nematic elastomers," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
- Sota Kato & Shigeki Furukawa & Daisuke Aoki & Raita Goseki & Kazusato Oikawa & Kousuke Tsuchiya & Naohiko Shimada & Atsushi Maruyama & Keiji Numata & Hideyuki Otsuka, 2021. "Crystallization-induced mechanofluorescence for visualization of polymer crystallization," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
- D. Mistry & N. A. Traugutt & B. Sanborn & R. H. Volpe & L. S. Chatham & R. Zhou & B. Song & K. Yu & K. N. Long & C. M. Yakacki, 2021. "Soft elasticity optimises dissipation in 3D-printed liquid crystal elastomers," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
- Mohand O. Saed & Waiel Elmadih & Andrew Terentjev & Dimitrios Chronopoulos & David Williamson & Eugene M. Terentjev, 2021. "Impact damping and vibration attenuation in nematic liquid crystal elastomers," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
- R. S. Lakes & T. Lee & A. Bersie & Y. C. Wang, 2001. "Extreme damping in composite materials with negative-stiffness inclusions," Nature, Nature, vol. 410(6828), pages 565-567, March.
- Jin Huang & Yichao Xu & Shuanhu Qi & Jiajia Zhou & Wei Shi & Tianyi Zhao & Mingjie Liu, 2021. "Ultrahigh energy-dissipation elastomers by precisely tailoring the relaxation of confined polymer fluids," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Qingrui Wang & Xiaoyong Tian & Daokang Zhang & Yanli Zhou & Wanquan Yan & Dichen Li, 2023. "Programmable spatial deformation by controllable off-center freestanding 4D printing of continuous fiber reinforced liquid crystal elastomer composites," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Yu Cang & Jiaqi Liu & Meguya Ryu & Bartlomiej Graczykowski & Junko Morikawa & Shu Yang & George Fytas, 2022. "On the origin of elasticity and heat conduction anisotropy of liquid crystal elastomers at gigahertz frequencies," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Matej Bobnar & Nikita Derets & Saide Umerova & Valentina Domenici & Nikola Novak & Marta Lavrič & George Cordoyiannis & Boštjan Zalar & Andraž Rešetič, 2023. "Polymer-dispersed liquid crystal elastomers as moldable shape-programmable material," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Jinhao Zhang & Mi Xiao & Liang Gao & Andrea Alù & Fengwen Wang, 2023. "Self-bridging metamaterials surpassing the theoretical limit of Poisson’s ratios," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
- Woojin Choi & Utkarsh Mangal & Jae-Hun Yu & Jeong-Hyun Ryu & Ji‑Yeong Kim & Taesuk Jun & Yoojin Lee & Heesu Cho & Moonhyun Choi & Milae Lee & Du Yeol Ryu & Sang-Young Lee & Se Yong Jung & Jae-Kook Cha, 2024. "Viscoelastic and antimicrobial dental care bioplastic with recyclable life cycle," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- Huan Jiang & Christopher Chung & Martin L. Dunn & Kai Yu, 2024. "4D printing of liquid crystal elastomer composites with continuous fiber reinforcement," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Yuying Chen & Jing Li & Shaotao Zhu & Hongzhen Zhao, 2023. "Further Optimization of Maxwell-Type Dynamic Vibration Absorber with Inerter and Negative Stiffness Spring Using Particle Swarm Algorithm," Mathematics, MDPI, vol. 11(8), pages 1-28, April.
- Zachary G. Nicolaou & Feng Jiang & Adilson E. Motter, 2024. "Metamaterials with negative compressibility highlight evolving interpretations and opportunities," Nature Communications, Nature, vol. 15(1), pages 1-3, December.
- D. Mistry & N. A. Traugutt & B. Sanborn & R. H. Volpe & L. S. Chatham & R. Zhou & B. Song & K. Yu & K. N. Long & C. M. Yakacki, 2021. "Soft elasticity optimises dissipation in 3D-printed liquid crystal elastomers," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
- Junfeng Lu & Jingjing Deng & Yan Wei & Xiuyi Yang & Hewei Zhao & Qihan Zhao & Shaojia Liu & Fengshi Li & Yangbei Li & Xuliang Deng & Lei Jiang & Lin Guo, 2024. "Hierarchically mimicking outer tooth enamel for restorative mechanical compatibility," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
- Chenxu Wang & Sergey Akbulatov & Qihan Chen & Yancong Tian & Cai-Li Sun & Marc Couty & Roman Boulatov, 2022. "The molecular mechanism of constructive remodeling of a mechanically-loaded polymer," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
- Xiaolu Sun & Shaoyun Chen & Bo Qu & Rui Wang & Yanyu Zheng & Xiaoying Liu & Wenjie Li & Jianhong Gao & Qinhui Chen & Dongxian Zhuo, 2023. "Light-oriented 3D printing of liquid crystal/photocurable resins and in-situ enhancement of mechanical performance," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
- Xiaofang Zhang & Saewon Kang & Katarina Adstedt & Minkyu Kim & Rui Xiong & Juan Yu & Xinran Chen & Xulin Zhao & Chunhong Ye & Vladimir V. Tsukruk, 2022. "Uniformly aligned flexible magnetic films from bacterial nanocelluloses for fast actuating optical materials," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Jianfeng Yang & M. Ravi Shankar & Hao Zeng, 2024. "Photochemically responsive polymer films enable tunable gliding flights," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54233-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.