IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33615-z.html
   My bibliography  Save this article

Uniformly aligned flexible magnetic films from bacterial nanocelluloses for fast actuating optical materials

Author

Listed:
  • Xiaofang Zhang

    (Wuhan Textile University
    Georgia Institute of Technology)

  • Saewon Kang

    (Georgia Institute of Technology)

  • Katarina Adstedt

    (Georgia Institute of Technology)

  • Minkyu Kim

    (Georgia Institute of Technology)

  • Rui Xiong

    (Georgia Institute of Technology
    Polymer Research Institute of Sichuan University)

  • Juan Yu

    (Georgia Institute of Technology)

  • Xinran Chen

    (Shanghai Tech University)

  • Xulin Zhao

    (Shanghai Tech University)

  • Chunhong Ye

    (Shanghai Tech University)

  • Vladimir V. Tsukruk

    (Georgia Institute of Technology)

Abstract

Naturally derived biopolymers have attracted great interest to construct photonic materials with multi-scale ordering, adaptive birefringence, chiral organization, actuation and robustness. Nevertheless, traditional processing commonly results in non-uniform organization across large-scale areas. Here, we report magnetically steerable uniform biophotonic organization of cellulose nanocrystals decorated with superparamagnetic nanoparticles with strong magnetic susceptibility, enabling transformation from helicoidal cholesteric (chiral nematic) to uniaxial nematic phase with near-perfect orientation order parameter of 0.98 across large areas. We demonstrate that magnetically triggered high shearing rate of circular flow exceeds those for conventional evaporation-based assembly by two orders of magnitude. This high rate shearing facilitates unconventional unidirectional orientation of nanocrystals along gradient magnetic field and untwisting helical organization. These translucent magnetic films are flexible, robust, and possess anisotropic birefringence and light scattering combined with relatively high optical transparency reaching 75%. Enhanced mechanical robustness and uniform organization facilitate fast, multimodal, and repeatable actuation in response to magnetic field, humidity variation, and light illumination.

Suggested Citation

  • Xiaofang Zhang & Saewon Kang & Katarina Adstedt & Minkyu Kim & Rui Xiong & Juan Yu & Xinran Chen & Xulin Zhao & Chunhong Ye & Vladimir V. Tsukruk, 2022. "Uniformly aligned flexible magnetic films from bacterial nanocelluloses for fast actuating optical materials," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33615-z
    DOI: 10.1038/s41467-022-33615-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33615-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33615-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Takuya Ohzono & Kaoru Katoh & Hiroyuki Minamikawa & Mohand O. Saed & Eugene M. Terentjev, 2021. "Internal constraints and arrested relaxation in main-chain nematic elastomers," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    2. Sophia Jordens & Lucio Isa & Ivan Usov & Raffaele Mezzenga, 2013. "Non-equilibrium nature of two-dimensional isotropic and nematic coexistence in amyloid fibrils at liquid interfaces," Nature Communications, Nature, vol. 4(1), pages 1-8, October.
    3. Pei-Xi Wang & Wadood Y. Hamad & Mark J. MacLachlan, 2016. "Structure and transformation of tactoids in cellulose nanocrystal suspensions," Nature Communications, Nature, vol. 7(1), pages 1-8, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matej Bobnar & Nikita Derets & Saide Umerova & Valentina Domenici & Nikola Novak & Marta Lavrič & George Cordoyiannis & Boštjan Zalar & Andraž Rešetič, 2023. "Polymer-dispersed liquid crystal elastomers as moldable shape-programmable material," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. D. Mistry & N. A. Traugutt & B. Sanborn & R. H. Volpe & L. S. Chatham & R. Zhou & B. Song & K. Yu & K. N. Long & C. M. Yakacki, 2021. "Soft elasticity optimises dissipation in 3D-printed liquid crystal elastomers," Nature Communications, Nature, vol. 12(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33615-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.