IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30947-8.html
   My bibliography  Save this article

The molecular mechanism of constructive remodeling of a mechanically-loaded polymer

Author

Listed:
  • Chenxu Wang

    (University of Liverpool)

  • Sergey Akbulatov

    (University of Liverpool)

  • Qihan Chen

    (University of Liverpool)

  • Yancong Tian

    (University of Liverpool)

  • Cai-Li Sun

    (University of Liverpool)

  • Marc Couty

    (Manufacture Française des Pneumatiques Michelin)

  • Roman Boulatov

    (University of Liverpool)

Abstract

Large or repeated mechanical loads usually degrade polymers by accelerating fragmentation of their backbones but rarely, they can cause new backbone bonds to form. When these new bonds form faster than the original bonds break, mechanical degradation may be arrested or reversed in real time. Exploiting such constructive remodeling has proven challenging because we lack an understanding of the competition between bond-forming and bond-breaking reactions in mechanically-stressed polymers. Here we report the molecular mechanism and analysis of constructive remodeling driven by the macroradical products of mechanochemical fragmentation of a hydrocarbon backbone. By studying the changing compositions of a random copolymer of styrene and butadiene sheared at 10 °C in the presence of different additives we developed an approach to characterizing this growth/fracture competition, which is generalizable to other underlying chemistries. Our results demonstrate that constructive remodeling is achievable under practically relevant conditions, requires neither complex chemistries, elaborate macromolecular architectures or free monomers, and is amenable to detailed mechanistic interrogation and simulation. These findings constitute a quantitative framework for systematic studies of polymers capable of autonomously counteracting mechanical degradation at the molecular level.

Suggested Citation

  • Chenxu Wang & Sergey Akbulatov & Qihan Chen & Yancong Tian & Cai-Li Sun & Marc Couty & Roman Boulatov, 2022. "The molecular mechanism of constructive remodeling of a mechanically-loaded polymer," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30947-8
    DOI: 10.1038/s41467-022-30947-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30947-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30947-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Huan Zhang & Xun Li & Yangju Lin & Fei Gao & Zhen Tang & Peifeng Su & Wenke Zhang & Yuanze Xu & Wengui Weng & Roman Boulatov, 2017. "Multi-modal mechanophores based on cinnamate dimers," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    2. Sota Kato & Shigeki Furukawa & Daisuke Aoki & Raita Goseki & Kazusato Oikawa & Kousuke Tsuchiya & Naohiko Shimada & Atsushi Maruyama & Keiji Numata & Hideyuki Otsuka, 2021. "Crystallization-induced mechanofluorescence for visualization of polymer crystallization," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yichen Yu & Robert T. O’Neill & Roman Boulatov & Ross A. Widenhoefer & Stephen L. Craig, 2023. "Allosteric control of olefin isomerization kinetics via remote metal binding and its mechanochemical analysis," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tze-Gang Hsu & Shiqi Liu & Xin Guan & Seiyoung Yoon & Junfeng Zhou & Wei-Yuan Chen & Sanjay Gaire & Joshua Seylar & Hanlin Chen & Zeyu Wang & Jared Rivera & Leyao Wu & Christopher J. Ziegler & Ruel Mc, 2023. "Mechanochemically accessing a challenging-to-synthesize depolymerizable polymer," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Mengqi Du & Hannes A. Houck & Qiang Yin & Yewei Xu & Ying Huang & Yang Lan & Li Yang & Filip E. Du Prez & Guanjun Chang, 2022. "Force–reversible chemical reaction at ambient temperature for designing toughened dynamic covalent polymer networks," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30947-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.