IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54141-0.html
   My bibliography  Save this article

Loss of cytoplasmic actin filaments raises nuclear actin levels to drive INO80C-dependent chromosome fragmentation

Author

Listed:
  • Verena Hurst

    (Fabrikstrasse 24)

  • Christian B. Gerhold

    (Fabrikstrasse 24
    Baselstrasse 55)

  • Cleo V. D. Tarashev

    (Fabrikstrasse 24)

  • Kiran Challa

    (Fabrikstrasse 24
    Paul-Scherrer Institute)

  • Andrew Seeber

    (Fabrikstrasse 24
    250 Arsenal St)

  • Shota Yamazaki

    (Aoba-ku)

  • Britta Knapp

    (Fabrikstrasse 22)

  • Stephen B. Helliwell

    (Fabrikstrasse 22
    Cellvie AG)

  • Bernd Bodenmiller

    (Winterthurerstrasse 190)

  • Masahiko Harata

    (Aoba-ku)

  • Kenji Shimada

    (Fabrikstrasse 24)

  • Susan M. Gasser

    (Fabrikstrasse 24
    rue du Bugnon 25A)

Abstract

Loss of cytosolic actin filaments upon TORC2 inhibition triggers chromosome fragmentation in yeast, which results from altered base excision repair of Zeocin-induced lesions. To find the link between TORC2 kinase and this yeast chromosome shattering (YCS) we performed phosphoproteomics. YCS-relevant phospho-targets included plasma membrane-associated regulators of actin polymerization, such as Las17, the yeast Wiscott-Aldrich Syndrome protein. Induced degradation of Las17 was sufficient to trigger YCS in presence of Zeocin, bypassing TORC2 inhibition. In yeast, Las17 does not act directly at damage, but instead its loss, like TORC2 inhibition, raises nuclear actin levels. Nuclear actin, in complex with Arp4, forms an essential subunit of several nucleosome remodeler complexes, including INO80C, which facilitates DNA polymerase elongation. Here we show that the genetic ablation of INO80C activity leads to partial YCS resistance, suggesting that elevated levels of nuclear G-actin may stimulate INO80C to increase DNA polymerase processivity and convert single-strand lesions into double-strand breaks.

Suggested Citation

  • Verena Hurst & Christian B. Gerhold & Cleo V. D. Tarashev & Kiran Challa & Andrew Seeber & Shota Yamazaki & Britta Knapp & Stephen B. Helliwell & Bernd Bodenmiller & Masahiko Harata & Kenji Shimada & , 2024. "Loss of cytoplasmic actin filaments raises nuclear actin levels to drive INO80C-dependent chromosome fragmentation," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54141-0
    DOI: 10.1038/s41467-024-54141-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54141-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54141-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christopher P. Caridi & Carla D’Agostino & Taehyun Ryu & Grzegorz Zapotoczny & Laetitia Delabaere & Xiao Li & Varandt Y. Khodaverdian & Nuno Amaral & Emily Lin & Alesandra R. Rau & Irene Chiolo, 2018. "Nuclear F-actin and myosins drive relocalization of heterochromatic breaks," Nature, Nature, vol. 559(7712), pages 54-60, July.
    2. Kenji Shimada & Cleo V. D. Tarashev & Stephanie Bregenhorn & Christian B. Gerhold & Barbara Loon & Gregory Roth & Verena Hurst & Josef Jiricny & Stephen B. Helliwell & Susan M. Gasser, 2024. "TORC2 inhibition triggers yeast chromosome fragmentation through misregulated Base Excision Repair of clustered oxidation events," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    3. Maria Dilia Palumbieri & Chiara Merigliano & Daniel González-Acosta & Danina Kuster & Jana Krietsch & Henriette Stoy & Thomas Känel & Svenja Ulferts & Bettina Welter & Joël Frey & Cyril Doerdelmann & , 2023. "Nuclear actin polymerization rapidly mediates replication fork remodeling upon stress by limiting PrimPol activity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Benjamin R. Schrank & Tomas Aparicio & Yinyin Li & Wakam Chang & Brian T. Chait & Gregg G. Gundersen & Max E. Gottesman & Jean Gautier, 2018. "Nuclear ARP2/3 drives DNA break clustering for homology-directed repair," Nature, Nature, vol. 559(7712), pages 61-66, July.
    5. Seong-Su Han & Kuo-Kuang Wen & María L. García-Rubio & Marc S. Wold & Andrés Aguilera & Wojciech Niedzwiedz & Yatin M. Vyas, 2022. "WASp modulates RPA function on single-stranded DNA in response to replication stress and DNA damage," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    6. Xuetong Shen & Gaku Mizuguchi & Ali Hamiche & Carl Wu, 2000. "A chromatin remodelling complex involved in transcription and DNA processing," Nature, Nature, vol. 406(6795), pages 541-544, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Shi & Kristine Hauschulte & Ivan Mikicic & Srijana Maharjan & Valerie Arz & Tina Strauch & Jan B. Heidelberger & Jonas V. Schaefer & Birgit Dreier & Andreas Plückthun & Petra Beli & Helle D. Ulric, 2023. "Nuclear myosin VI maintains replication fork stability," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Maria Dilia Palumbieri & Chiara Merigliano & Daniel González-Acosta & Danina Kuster & Jana Krietsch & Henriette Stoy & Thomas Känel & Svenja Ulferts & Bettina Welter & Joël Frey & Cyril Doerdelmann & , 2023. "Nuclear actin polymerization rapidly mediates replication fork remodeling upon stress by limiting PrimPol activity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Camilla S. Colding-Christensen & Ellen S. Kakulidis & Javier Arroyo-Gomez & Ivo A. Hendriks & Connor Arkinson & Zita Fábián & Agnieszka Gambus & Niels Mailand & Julien P. Duxin & Michael L. Nielsen, 2023. "Profiling ubiquitin signalling with UBIMAX reveals DNA damage- and SCFβ-Trcp1-dependent ubiquitylation of the actin-organizing protein Dbn1," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    4. Kim L. Luca & Pim M. J. Rullens & Magdalena A. Karpinska & Sandra S. Vries & Agnieszka Gacek-Matthews & Lőrinc S. Pongor & Gaëlle Legube & Joanna W. Jachowicz & A. Marieke Oudelaar & Jop Kind, 2024. "Genome-wide profiling of DNA repair proteins in single cells," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Baolei Yuan & Xuan Zhou & Keiichiro Suzuki & Gerardo Ramos-Mandujano & Mengge Wang & Muhammad Tehseen & Lorena V. Cortés-Medina & James J. Moresco & Sarah Dunn & Reyna Hernandez-Benitez & Tomoaki Hish, 2022. "Wiskott-Aldrich syndrome protein forms nuclear condensates and regulates alternative splicing," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    6. Ying-Ying Jin & Peng Zhang & Le-Le Liu & Xiang Zhao & Xiao-Qing Hu & Si-Zhe Liu & Ze-Kun Li & Qian Liu & Jian-Qiao Wang & De-Long Hao & Zhu-Qin Zhang & Hou-Zao Chen & De-Pei Liu, 2024. "Enhancing homology-directed repair efficiency with HDR-boosting modular ssDNA donor," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Ália dos Santos & Daniel E. Rollins & Yukti Hari-Gupta & Hannah McArthur & Mingxue Du & Sabrina Yong Zi Ru & Kseniia Pidlisna & Ane Stranger & Faeeza Lorgat & Danielle Lambert & Ian Brown & Kevin Howl, 2023. "Autophagy receptor NDP52 alters DNA conformation to modulate RNA polymerase II transcription," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
    8. Cuige Zhu & Mari Iwase & Ziqian Li & Faliang Wang & Annabel Quinet & Alessandro Vindigni & Jieya Shao, 2022. "Profilin-1 regulates DNA replication forks in a context-dependent fashion by interacting with SNF2H and BOD1L," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    9. Lidice González & Daniel Kolbin & Christian Trahan & Célia Jeronimo & François Robert & Marlene Oeffinger & Kerry Bloom & Stephen W. Michnick, 2023. "Adaptive partitioning of a gene locus to the nuclear envelope in Saccharomyces cerevisiae is driven by polymer-polymer phase separation," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. Yukti Hari-Gupta & Natalia Fili & Ália dos Santos & Alexander W. Cook & Rosemarie E. Gough & Hannah C. W. Reed & Lin Wang & Jesse Aaron & Tomas Venit & Eric Wait & Andreas Grosse-Berkenbusch & J. Chri, 2022. "Myosin VI regulates the spatial organisation of mammalian transcription initiation," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    11. Seong-Su Han & Kuo-Kuang Wen & María L. García-Rubio & Marc S. Wold & Andrés Aguilera & Wojciech Niedzwiedz & Yatin M. Vyas, 2022. "WASp modulates RPA function on single-stranded DNA in response to replication stress and DNA damage," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54141-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.