IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38572-9.html
   My bibliography  Save this article

Autophagy receptor NDP52 alters DNA conformation to modulate RNA polymerase II transcription

Author

Listed:
  • Ália dos Santos

    (University of Sheffield
    MRC LMB, Francis Crick Avenue)

  • Daniel E. Rollins

    (University of Sheffield)

  • Yukti Hari-Gupta

    (University of Kent
    MRC LMCB, University College London)

  • Hannah McArthur

    (University of Kent)

  • Mingxue Du

    (University of Sheffield)

  • Sabrina Yong Zi Ru

    (University of Kent)

  • Kseniia Pidlisna

    (University of Kent)

  • Ane Stranger

    (University of Kent)

  • Faeeza Lorgat

    (University of Sheffield)

  • Danielle Lambert

    (University of Sheffield)

  • Ian Brown

    (University of Kent)

  • Kevin Howland

    (University of Kent)

  • Jesse Aaron

    (HHMI Janelia Research Campus)

  • Lin Wang

    (Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, Didcot)

  • Peter J. I. Ellis

    (University of Kent)

  • Teng-Leong Chew

    (HHMI Janelia Research Campus)

  • Marisa Martin-Fernandez

    (Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, Didcot)

  • Alice L. B. Pyne

    (University of Sheffield)

  • Christopher P. Toseland

    (University of Sheffield)

Abstract

NDP52 is an autophagy receptor involved in the recognition and degradation of invading pathogens and damaged organelles. Although NDP52 was first identified in the nucleus and is expressed throughout the cell, to date, there is no clear nuclear functions for NDP52. Here, we use a multidisciplinary approach to characterise the biochemical properties and nuclear roles of NDP52. We find that NDP52 clusters with RNA Polymerase II (RNAPII) at transcription initiation sites and that its overexpression promotes the formation of additional transcriptional clusters. We also show that depletion of NDP52 impacts overall gene expression levels in two model mammalian cells, and that transcription inhibition affects the spatial organisation and molecular dynamics of NDP52 in the nucleus. This directly links NDP52 to a role in RNAPII-dependent transcription. Furthermore, we also show that NDP52 binds specifically and with high affinity to double-stranded DNA (dsDNA) and that this interaction leads to changes in DNA structure in vitro. This, together with our proteomics data indicating enrichment for interactions with nucleosome remodelling proteins and DNA structure regulators, suggests a possible function for NDP52 in chromatin regulation. Overall, here we uncover nuclear roles for NDP52 in gene expression and DNA structure regulation.

Suggested Citation

  • Ália dos Santos & Daniel E. Rollins & Yukti Hari-Gupta & Hannah McArthur & Mingxue Du & Sabrina Yong Zi Ru & Kseniia Pidlisna & Ane Stranger & Faeeza Lorgat & Danielle Lambert & Ian Brown & Kevin Howl, 2023. "Autophagy receptor NDP52 alters DNA conformation to modulate RNA polymerase II transcription," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38572-9
    DOI: 10.1038/s41467-023-38572-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38572-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38572-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yukti Hari-Gupta & Natalia Fili & Ália dos Santos & Alexander W. Cook & Rosemarie E. Gough & Hannah C. W. Reed & Lin Wang & Jesse Aaron & Tomas Venit & Eric Wait & Andreas Grosse-Berkenbusch & J. Chri, 2022. "Myosin VI regulates the spatial organisation of mammalian transcription initiation," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    2. Benjamin R. Schrank & Tomas Aparicio & Yinyin Li & Wakam Chang & Brian T. Chait & Gregg G. Gundersen & Max E. Gottesman & Jean Gautier, 2018. "Nuclear ARP2/3 drives DNA break clustering for homology-directed repair," Nature, Nature, vol. 559(7712), pages 61-66, July.
    3. Natalia Fili & Yukti Hari-Gupta & Ália dos Santos & Alexander Cook & Simon Poland & Simon M. Ameer-Beg & Maddy Parsons & Christopher P. Toseland, 2017. "NDP52 activates nuclear myosin VI to enhance RNA polymerase II transcription," Nature Communications, Nature, vol. 8(1), pages 1-15, December.
    4. Byeong-Won Kim & Seung Beom Hong & Jun Hoe Kim & Do Hoon Kwon & Hyun Kyu Song, 2013. "Structural basis for recognition of autophagic receptor NDP52 by the sugar receptor galectin-8," Nature Communications, Nature, vol. 4(1), pages 1-8, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Shi & Kristine Hauschulte & Ivan Mikicic & Srijana Maharjan & Valerie Arz & Tina Strauch & Jan B. Heidelberger & Jonas V. Schaefer & Birgit Dreier & Andreas Plückthun & Petra Beli & Helle D. Ulric, 2023. "Nuclear myosin VI maintains replication fork stability," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Baolei Yuan & Xuan Zhou & Keiichiro Suzuki & Gerardo Ramos-Mandujano & Mengge Wang & Muhammad Tehseen & Lorena V. Cortés-Medina & James J. Moresco & Sarah Dunn & Reyna Hernandez-Benitez & Tomoaki Hish, 2022. "Wiskott-Aldrich syndrome protein forms nuclear condensates and regulates alternative splicing," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    3. Xinheng He & Lifen Zhao & Yinping Tian & Rui Li & Qinyu Chu & Zhiyong Gu & Mingyue Zheng & Yusong Wang & Shaoning Li & Hualiang Jiang & Yi Jiang & Liuqing Wen & Dingyan Wang & Xi Cheng, 2024. "Highly accurate carbohydrate-binding site prediction with DeepGlycanSite," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Camilla S. Colding-Christensen & Ellen S. Kakulidis & Javier Arroyo-Gomez & Ivo A. Hendriks & Connor Arkinson & Zita Fábián & Agnieszka Gambus & Niels Mailand & Julien P. Duxin & Michael L. Nielsen, 2023. "Profiling ubiquitin signalling with UBIMAX reveals DNA damage- and SCFβ-Trcp1-dependent ubiquitylation of the actin-organizing protein Dbn1," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    5. Shuzhi Cui & Tian Xia & Jianjin Zhao & Xiaoyu Ren & Tingtao Wu & Mireille Kameni & Xiaoju Guo & Li He & Jingao Guo & Aléria Duperray-Susini & Florence Levillayer & Jean-Marc Collard & Jin Zhong & Life, 2023. "NDP52 mediates an antiviral response to hepatitis B virus infection through Rab9-dependent lysosomal degradation pathway," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Ying-Ying Jin & Peng Zhang & Le-Le Liu & Xiang Zhao & Xiao-Qing Hu & Si-Zhe Liu & Ze-Kun Li & Qian Liu & Jian-Qiao Wang & De-Long Hao & Zhu-Qin Zhang & Hou-Zao Chen & De-Pei Liu, 2024. "Enhancing homology-directed repair efficiency with HDR-boosting modular ssDNA donor," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Matteo Mazzocca & Alessia Loffreda & Emanuele Colombo & Tom Fillot & Daniela Gnani & Paola Falletta & Emanuele Monteleone & Serena Capozi & Edouard Bertrand & Gaelle Legube & Zeno Lavagnino & Carlo Ta, 2023. "Chromatin organization drives the search mechanism of nuclear factors," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Louise Canon & Carlos Kikuti & Vicente J. Planelles-Herrero & Tianming Lin & Franck Mayeux & Helena Sirkia & Young il Lee & Leila Heidsieck & Léonid Velikovsky & Amandine David & Xiaoyan Liu & Dihia M, 2023. "How myosin VI traps its off-state, is activated and dimerizes," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    9. Seong-Su Han & Kuo-Kuang Wen & María L. García-Rubio & Marc S. Wold & Andrés Aguilera & Wojciech Niedzwiedz & Yatin M. Vyas, 2022. "WASp modulates RPA function on single-stranded DNA in response to replication stress and DNA damage," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    10. Maria Dilia Palumbieri & Chiara Merigliano & Daniel González-Acosta & Danina Kuster & Jana Krietsch & Henriette Stoy & Thomas Känel & Svenja Ulferts & Bettina Welter & Joël Frey & Cyril Doerdelmann & , 2023. "Nuclear actin polymerization rapidly mediates replication fork remodeling upon stress by limiting PrimPol activity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    11. Janeska J. Jonge & Andreas Graw & Vasileios Kargas & Christopher Batters & Antonino F. Montanarella & Tom O’Loughlin & Chloe Johnson & Susan D. Arden & Alan J. Warren & Michael A. Geeves & John Kendri, 2024. "Motor domain phosphorylation increases nucleotide exchange and turns MYO6 into a faster and stronger motor," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38572-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.