IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54134-z.html
   My bibliography  Save this article

Non-targeted N-glycome profiling reveals multiple layers of organ-specific diversity in mice

Author

Listed:
  • Johannes Helm

    (Muthgasse 18)

  • Stefan Mereiter

    (Spitalgasse 23
    Dr. Bohr-Gasse 3)

  • Tiago Oliveira

    (Spitalgasse 23
    Dr. Bohr-Gasse 3)

  • Anna Gattinger

    (Dr. Bohr-Gasse 3
    Softwarepark 11)

  • David M. Markovitz

    (University of Michigan)

  • Josef M. Penninger

    (Spitalgasse 23
    Dr. Bohr-Gasse 3
    2350 Health Sciences Mall
    Helmholtz Centre for Infection Research)

  • Friedrich Altmann

    (Muthgasse 18)

  • Johannes Stadlmann

    (Muthgasse 18
    Muthgasse 18)

Abstract

N-glycosylation is one of the most common protein modifications in eukaryotes, with immense importance at the molecular, cellular, and organismal level. Accurate and reliable N-glycan analysis is essential to obtain a systems-wide understanding of fundamental biological processes. Due to the structural complexity of glycans, their analysis is still highly challenging. Here we make publicly available a consistent N-glycome dataset of 20 different mouse tissues and demonstrate a multimodal data analysis workflow that allows for unprecedented depth and coverage of N-glycome features. This highly scalable, LC-MS/MS data-driven method integrates the automated identification of N-glycan spectra, the application of non-targeted N-glycome profiling strategies and the isomer-sensitive analysis of glycan structures. Our delineation of critical sub-structural determinants and glycan isomers across the mouse N-glycome uncovered tissue-specific glycosylation patterns, the expression of non-canonical N-glycan structures and highlights multiple layers of N-glycome complexity that derive from organ-specific regulations of glycobiological pathways.

Suggested Citation

  • Johannes Helm & Stefan Mereiter & Tiago Oliveira & Anna Gattinger & David M. Markovitz & Josef M. Penninger & Friedrich Altmann & Johannes Stadlmann, 2024. "Non-targeted N-glycome profiling reveals multiple layers of organ-specific diversity in mice," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54134-z
    DOI: 10.1038/s41467-024-54134-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54134-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54134-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gaёl M. Vos & Kevin C. Hooijschuur & Zeshi Li & John Fjeldsted & Christian Klein & Robert P. Vries & Javier Sastre Toraño & Geert-Jan Boons, 2023. "Sialic acid O-acetylation patterns and glycosidic linkage type determination by ion mobility-mass spectrometry," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Sarah E. Williams & Maxence Noel & Sylvain Lehoux & Murat Cetinbas & Ramnik J. Xavier & Ruslan I. Sadreyev & Edward M. Scolnick & Jordan W. Smoller & Richard D. Cummings & Robert G. Mealer, 2022. "Mammalian brain glycoproteins exhibit diminished glycan complexity compared to other tissues," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. Anna-Maria T. Baumann & Mark J. G. Bakkers & Falk F. R. Buettner & Maike Hartmann & Melanie Grove & Martijn A. Langereis & Raoul J. de Groot & Martina Mühlenhoff, 2015. "9-O-Acetylation of sialic acids is catalysed by CASD1 via a covalent acetyl-enzyme intermediate," Nature Communications, Nature, vol. 6(1), pages 1-12, November.
    4. Paula D. Bos & Xiang H.-F. Zhang & Cristina Nadal & Weiping Shu & Roger R. Gomis & Don X. Nguyen & Andy J. Minn & Marc J. van de Vijver & William L. Gerald & John A. Foekens & Joan Massagué, 2009. "Genes that mediate breast cancer metastasis to the brain," Nature, Nature, vol. 459(7249), pages 1005-1009, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bieke Decaesteker & Amber Louwagie & Siebe Loontiens & Fanny De Vloed & Sarah-Lee Bekaert & Juliette Roels & Suzanne Vanhauwaert & Sara De Brouwer & Ellen Sanders & Alla Berezovskaya & Geertrui Deneck, 2023. "SOX11 regulates SWI/SNF complex components as member of the adrenergic neuroblastoma core regulatory circuitry," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Diego E. Sastre & Nazneen Sultana & Marcos V. A. S. Navarro & Maros Huliciak & Jonathan Du & Javier O. Cifuente & Maria Flowers & Xu Liu & Pete Lollar & Beatriz Trastoy & Marcelo E. Guerin & Eric J. S, 2024. "Human gut microbes express functionally distinct endoglycosidases to metabolize the same N-glycan substrate," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Weili Ma & Maria Cecília Oliveira-Nunes & Ke Xu & Andrew Kossenkov & Benjamin C. Reiner & Richard C. Crist & James Hayden & Qing Chen, 2023. "Type I interferon response in astrocytes promotes brain metastasis by enhancing monocytic myeloid cell recruitment," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    4. Shen Zhao & Wu Zhuang & Baohui Han & Zhengbo Song & Wei Guo & Feng Luo & Lin Wu & Yi Hu & Huijuan Wang & Xiaorong Dong & Da Jiang & Mingxia Wang & Liyun Miao & Qian Wang & Junping Zhang & Zhenming Fu , 2023. "Phase 1b trial of anti-EGFR antibody JMT101 and Osimertinib in EGFR exon 20 insertion-positive non-small-cell lung cancer," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Jenniffer Linares & Anna Sallent-Aragay & Jordi Badia-Ramentol & Alba Recort-Bascuas & Ana Méndez & Noemí Manero-Rupérez & Daniele Lo Re & Elisa I. Rivas & Marc Guiu & Melissa Zwick & Mar Iglesias & C, 2023. "Long-term platinum-based drug accumulation in cancer-associated fibroblasts promotes colorectal cancer progression and resistance to therapy," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    6. Wonbin Park & Jae-Seong Lee & Ge Gao & Byoung Soo Kim & Dong-Woo Cho, 2023. "3D bioprinted multilayered cerebrovascular conduits to study cancer extravasation mechanism related with vascular geometry," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Leïla Bechtella & Jin Chunsheng & Kerstin Fentker & Güney R. Ertürk & Marc Safferthal & Łukasz Polewski & Michael Götze & Simon Y. Graeber & Gaël M. Vos & Weston B. Struwe & Marcus A. Mall & Philipp M, 2024. "Ion mobility-tandem mass spectrometry of mucin-type O-glycans," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Shuling Xu & Zhijun Zhu & Daniel G. Delafield & Michael J. Rigby & Gaoyuan Lu & Megan Braun & Luigi Puglielli & Lingjun Li, 2024. "Spatially and temporally probing distinctive glycerophospholipid alterations in Alzheimer’s disease mouse brain via high-resolution ion mobility-enabled sn-position resolved lipidomics," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    9. Gaёl M. Vos & Kevin C. Hooijschuur & Zeshi Li & John Fjeldsted & Christian Klein & Robert P. Vries & Javier Sastre Toraño & Geert-Jan Boons, 2023. "Sialic acid O-acetylation patterns and glycosidic linkage type determination by ion mobility-mass spectrometry," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Nicola Cosgrove & Damir Varešlija & Stephen Keelan & Ashuvinee Elangovan & Jennifer M. Atkinson & Sinéad Cocchiglia & Fiona T. Bane & Vikrant Singh & Simon Furney & Chunling Hu & Jodi M. Carter & Stev, 2022. "Mapping molecular subtype specific alterations in breast cancer brain metastases identifies clinically relevant vulnerabilities," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    11. Ke Li & Jiawei Guo & Yue Ming & Shuang Chen & Tingting Zhang & Hulin Ma & Xin Fu & Jin Wang & Wenrong Liu & Yong Peng, 2023. "A circular RNA activated by TGFβ promotes tumor metastasis through enhancing IGF2BP3-mediated PDPN mRNA stability," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    12. Bo Jiang & Xiaozhi Zhao & Wei Chen & Wenli Diao & Meng Ding & Haixiang Qin & Binghua Li & Wenmin Cao & Wei Chen & Yao Fu & Kuiqiang He & Jie Gao & Mengxia Chen & Tingsheng Lin & Yongming Deng & Chao Y, 2022. "Lysosomal protein transmembrane 5 promotes lung-specific metastasis by regulating BMPR1A lysosomal degradation," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    13. Shweta Godbole & Hannah Voß & Antonia Gocke & Simon Schlumbohm & Yannis Schumann & Bojia Peng & Martin Mynarek & Stefan Rutkowski & Matthias Dottermusch & Mario M. Dorostkar & Andrey Korshunov & Thoma, 2024. "Multiomic profiling of medulloblastoma reveals subtype-specific targetable alterations at the proteome and N-glycan level," Nature Communications, Nature, vol. 15(1), pages 1-24, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54134-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.