IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54056-w.html
   My bibliography  Save this article

A vagus nerve dominant tetra-synaptic ascending pathway for gastric pain processing

Author

Listed:
  • Fu-Chao Zhang

    (Soochow University)

  • Rui-Xia Weng

    (Soochow University
    The First Affiliated Hospital of Soochow University)

  • Di Li

    (Soochow University)

  • Yong-Chang Li

    (Soochow University)

  • Xiao-Xuan Dai

    (Soochow University)

  • Shufen Hu

    (Soochow University)

  • Qian Sun

    (The First Affiliated Hospital of Soochow University)

  • Rui Li

    (The First Affiliated Hospital of Soochow University)

  • Guang-Yin Xu

    (Soochow University)

Abstract

Gastric pain has limited treatment options and the mechanisms within the central circuitry remain largely unclear. This study investigates the central circuitry in gastric pain induced by noxious gastric distension (GD) in mice. Here, we identified that the nucleus tractus solitarius (NTS) serves as the first-level center of gastric pain, primarily via the vagus nerve. The prelimbic cortex (PL) is engaged in the perception of gastric pain. The lateral parabrachial nucleus (LPB) and the paraventricular thalamic nucleus (PVT) are crucial regions for synaptic transmission from the NTS to the PL. The glutamatergic tetra-synaptic NTS–LPB–PVT–PL circuitry is necessary and sufficient for the processing of gastric pain. Overall, our finding reveals a glutamatergic tetra-synaptic NTS–LPB–PVT–PL circuitry that transmits gastric nociceptive signaling by the vagus nerve in mice. It provides an insight into the gastric pain ascending pathway and offers potential therapeutic targets for relieving visceral pain.

Suggested Citation

  • Fu-Chao Zhang & Rui-Xia Weng & Di Li & Yong-Chang Li & Xiao-Xuan Dai & Shufen Hu & Qian Sun & Rui Li & Guang-Yin Xu, 2024. "A vagus nerve dominant tetra-synaptic ascending pathway for gastric pain processing," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54056-w
    DOI: 10.1038/s41467-024-54056-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54056-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54056-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chen Ran & Jack C. Boettcher & Judith A. Kaye & Catherine E. Gallori & Stephen D. Liberles, 2022. "A brainstem map for visceral sensations," Nature, Nature, vol. 609(7926), pages 320-326, September.
    2. Seungwon Choi & Junichi Hachisuka & Matthew A. Brett & Alexandra R. Magee & Yu Omori & Noor-ul-Aine Iqbal & Dawei Zhang & Michelle M. DeLisle & Rachel L. Wolfson & Ling Bai & Celine Santiago & Shiaoch, 2020. "Parallel ascending spinal pathways for affective touch and pain," Nature, Nature, vol. 587(7833), pages 258-263, November.
    3. Dong-Yoon Kim & Gyuryang Heo & Minyoo Kim & Hyunseo Kim & Ju Ae Jin & Hyun-Kyung Kim & Sieun Jung & Myungmo An & Benjamin H. Ahn & Jong Hwi Park & Han-Eol Park & Myungsun Lee & Jung Weon Lee & Gary J., 2020. "A neural circuit mechanism for mechanosensory feedback control of ingestion," Nature, Nature, vol. 580(7803), pages 376-380, April.
    4. Guo-Qiang Wang & Cheng Cen & Chong Li & Shuai Cao & Ning Wang & Zheng Zhou & Xue-Mei Liu & Yu Xu & Na-Xi Tian & Ying Zhang & Jun Wang & Li-Ping Wang & Yun Wang, 2015. "Deactivation of excitatory neurons in the prelimbic cortex via Cdk5 promotes pain sensation and anxiety," Nature Communications, Nature, vol. 6(1), pages 1-16, November.
    5. Chen Ran & Jack C. Boettcher & Judith A. Kaye & Catherine E. Gallori & Stephen D. Liberles, 2022. "Publisher Correction: A brainstem map for visceral sensations," Nature, Nature, vol. 611(7934), pages 6-6, November.
    6. Kyohei Kin & Jose Francis-Oliveira & Shin-ichi Kano & Minae Niwa, 2023. "Adolescent stress impairs postpartum social behavior via anterior insula-prelimbic pathway in mice," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    7. Truong Ly & Jun Y. Oh & Nilla Sivakumar & Sarah Shehata & Naymalis La Santa Medina & Heidi Huang & Zhengya Liu & Wendy Fang & Chris Barnes & Naz Dundar & Brooke C. Jarvie & Anagh Ravi & Olivia K. Barn, 2023. "Sequential appetite suppression by oral and visceral feedback to the brainstem," Nature, Nature, vol. 624(7990), pages 130-137, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miao Li & Guang Yang, 2024. "A mesocortical glutamatergic pathway modulates neuropathic pain independent of dopamine co-release," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Junjun Gao & Song Zhang & Pan Deng & Zhigang Wu & Bruno Lemaitre & Zongzhao Zhai & Zheng Guo, 2024. "Dietary L-Glu sensing by enteroendocrine cells adjusts food intake via modulating gut PYY/NPF secretion," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    3. Mayank Gautam & Akihiro Yamada & Ayaka I. Yamada & Qinxue Wu & Kim Kridsada & Jennifer Ling & Huasheng Yu & Peter Dong & Minghong Ma & Jianguo Gu & Wenqin Luo, 2024. "Distinct local and global functions of mouse Aβ low-threshold mechanoreceptors in mechanical nociception," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    4. Stefano Nardone & Roberto Luca & Antonino Zito & Nataliya Klymko & Dimitris Nicoloutsopoulos & Oren Amsalem & Cory Brannigan & Jon M. Resch & Christopher L. Jacobs & Deepti Pant & Molly Veregge & Hari, 2024. "A spatially-resolved transcriptional atlas of the murine dorsal pons at single-cell resolution," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    5. Satvinder Kaur & Nicole Lynch & Yaniv Sela & Janayna D. Lima & Renner C. Thomas & Sathyajit S. Bandaru & Clifford B. Saper, 2024. "Lateral parabrachial FoxP2 neurons regulate respiratory responses to hypercapnia," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    6. Longyu Ma & Lupeng Yue & Shuting Liu & Shi Xu & Jifu Tong & Xiaoyan Sun & Li Su & Shuang Cui & Feng-Yu Liu & You Wan & Ming Yi, 2024. "A distinct neuronal ensemble of prelimbic cortex mediates spontaneous pain in rats with peripheral inflammation," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54056-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.