IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48773-5.html
   My bibliography  Save this article

Lateral parabrachial FoxP2 neurons regulate respiratory responses to hypercapnia

Author

Listed:
  • Satvinder Kaur

    (Beth Israel Deaconess Medical Center, Harvard Medical School)

  • Nicole Lynch

    (Beth Israel Deaconess Medical Center, Harvard Medical School)

  • Yaniv Sela

    (Beth Israel Deaconess Medical Center, Harvard Medical School)

  • Janayna D. Lima

    (Beth Israel Deaconess Medical Center, Harvard Medical School)

  • Renner C. Thomas

    (Beth Israel Deaconess Medical Center, Harvard Medical School)

  • Sathyajit S. Bandaru

    (Beth Israel Deaconess Medical Center, Harvard Medical School)

  • Clifford B. Saper

    (Beth Israel Deaconess Medical Center, Harvard Medical School)

Abstract

About half of the neurons in the parabrachial nucleus (PB) that are activated by CO2 are located in the external lateral (el) subnucleus, express calcitonin gene-related peptide (CGRP), and cause forebrain arousal. We report here, in male mice, that most of the remaining CO2-responsive neurons in the adjacent central lateral (PBcl) and Kölliker-Fuse (KF) PB subnuclei express the transcription factor FoxP2 and many of these neurons project to respiratory sites in the medulla. PBclFoxP2 neurons show increased intracellular calcium during wakefulness and REM sleep and in response to elevated CO2 during NREM sleep. Photo-activation of the PBclFoxP2 neurons increases respiration, whereas either photo-inhibition of PBclFoxP2 or genetic deletion of PB/KFFoxP2 neurons reduces the respiratory response to CO2 stimulation without preventing awakening. Thus, augmenting the PBcl/KFFoxP2 response to CO2 in patients with sleep apnea in combination with inhibition of the PBelCGRP neurons may avoid hypoventilation and minimize EEG arousals.

Suggested Citation

  • Satvinder Kaur & Nicole Lynch & Yaniv Sela & Janayna D. Lima & Renner C. Thomas & Sathyajit S. Bandaru & Clifford B. Saper, 2024. "Lateral parabrachial FoxP2 neurons regulate respiratory responses to hypercapnia," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48773-5
    DOI: 10.1038/s41467-024-48773-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48773-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48773-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Satvinder Kaur & Roberto Luca & Mudasir A. Khanday & Sathyajit S. Bandaru & Renner C. Thomas & Rebecca Y. Broadhurst & Anne Venner & William D. Todd & Patrick M. Fuller & Elda Arrigoni & Clifford B. S, 2020. "Role of serotonergic dorsal raphe neurons in hypercapnia-induced arousals," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
    2. Dong-Yoon Kim & Gyuryang Heo & Minyoo Kim & Hyunseo Kim & Ju Ae Jin & Hyun-Kyung Kim & Sieun Jung & Myungmo An & Benjamin H. Ahn & Jong Hwi Park & Han-Eol Park & Myungsun Lee & Jung Weon Lee & Gary J., 2020. "A neural circuit mechanism for mechanosensory feedback control of ingestion," Nature, Nature, vol. 580(7803), pages 376-380, April.
    3. Carlos A. Campos & Anna J. Bowen & Carolyn W. Roman & Richard D. Palmiter, 2018. "Encoding of danger by parabrachial CGRP neurons," Nature, Nature, vol. 555(7698), pages 617-622, March.
    4. Joseph W. Arthurs & Anna J. Bowen & Richard D. Palmiter & Nathan A. Baertsch, 2023. "Parabrachial tachykinin1-expressing neurons involved in state-dependent breathing control," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefano Nardone & Roberto Luca & Antonino Zito & Nataliya Klymko & Dimitris Nicoloutsopoulos & Oren Amsalem & Cory Brannigan & Jon M. Resch & Christopher L. Jacobs & Deepti Pant & Molly Veregge & Hari, 2024. "A spatially-resolved transcriptional atlas of the murine dorsal pons at single-cell resolution," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    2. Junjun Gao & Song Zhang & Pan Deng & Zhigang Wu & Bruno Lemaitre & Zongzhao Zhai & Zheng Guo, 2024. "Dietary L-Glu sensing by enteroendocrine cells adjusts food intake via modulating gut PYY/NPF secretion," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    3. Joseph W. Arthurs & Anna J. Bowen & Richard D. Palmiter & Nathan A. Baertsch, 2023. "Parabrachial tachykinin1-expressing neurons involved in state-dependent breathing control," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Anna J. Bowen & Y. Waterlily Huang & Jane Y. Chen & Jordan L. Pauli & Carlos A. Campos & Richard D. Palmiter, 2023. "Topographic representation of current and future threats in the mouse nociceptive amygdala," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Takashi Nagashima & Suguru Tohyama & Kaori Mikami & Masashi Nagase & Mieko Morishima & Atsushi Kasai & Hitoshi Hashimoto & Ayako M. Watabe, 2022. "Parabrachial-to-parasubthalamic nucleus pathway mediates fear-induced suppression of feeding in male mice," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48773-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.