IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53894-y.html
   My bibliography  Save this article

Viral proteins resolve the virus-vector conundrum during hemipteran-mediated transmission by subverting salicylic acid signaling pathway

Author

Listed:
  • Jing-Ru Zhang

    (Zhejiang University)

  • Yi-Ming Liu

    (Zhejiang University)

  • Di Li

    (Zhejiang University)

  • Yi-Jie Wu

    (Zhejiang University)

  • Shi-Xing Zhao

    (Zhejiang University)

  • Xiao-Wei Wang

    (Zhejiang University)

  • Shu-Sheng Liu

    (Zhejiang University)

  • Linda L. Walling

    (University of California)

  • Li-Long Pan

    (Zhejiang University
    Zhejiang University)

Abstract

Hemipteran insects transmit viruses when infesting plants, during which vectors activate salicylic acid (SA)-regulated antiviral defenses. How vector-borne plant viruses circumvent these antiviral defenses is largely unexplored. During co-infections of begomoviruses and betasatellites in plants, betasatellite-encoded βC1 proteins interfere with SA signaling and reduce the activation of antiviral resistance. βC1 inhibits SA-induced degradation of NbNPR3 (Nicotiana benthamiana nonexpressor of pathogenesis-related genes 3), a negative regulator of SA signaling. βC1 does not bind directly to NbNPR3, but regulates NbNPR3 degradation via heat shock protein 90s (NbHSP90s). NbHSP90s bind to both NbNPR3 and βC1 and suppress SA signaling. This viral success strategy appears to be conserved as it is also documented for viral proteins encoded by two aphid-borne viruses. Our findings reveal an exquisite mechanism that facilitates the persistence of vector-borne plant viruses and provide important insights into the intricacies of the virus life cycle.

Suggested Citation

  • Jing-Ru Zhang & Yi-Ming Liu & Di Li & Yi-Jie Wu & Shi-Xing Zhao & Xiao-Wei Wang & Shu-Sheng Liu & Linda L. Walling & Li-Long Pan, 2024. "Viral proteins resolve the virus-vector conundrum during hemipteran-mediated transmission by subverting salicylic acid signaling pathway," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53894-y
    DOI: 10.1038/s41467-024-53894-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53894-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53894-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Qian Gong & Yunjing Wang & Linfang He & Fan Huang & Danfeng Zhang & Yan Wang & Xiang Wei & Meng Han & Haiteng Deng & Lan Luo & Feng Cui & Yiguo Hong & Yule Liu, 2023. "Molecular basis of methyl-salicylate-mediated plant airborne defence," Nature, Nature, vol. 622(7981), pages 139-148, October.
    2. Hehong Zhang & Fengmin Wang & Weiqi Song & Zihang Yang & Lulu Li & Qiang Ma & Xiaoxiang Tan & Zhongyan Wei & Yanjun Li & Junmin Li & Fei Yan & Jianping Chen & Zongtao Sun, 2023. "Different viral effectors suppress hormone-mediated antiviral immunity of rice coordinated by OsNPR1," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Renhou Wang & Yi Zhang & Martin Kieffer & Hong Yu & Stefan Kepinski & Mark Estelle, 2016. "HSP90 regulates temperature-dependent seedling growth in Arabidopsis by stabilizing the auxin co-receptor F-box protein TIR1," Nature Communications, Nature, vol. 7(1), pages 1-11, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suining Deng & Siqi Jiang & Baoshen Liu & Tao Zhong & Qingcai Liu & Jianju Liu & Yuanliang Liu & Can Yin & Chen Sun & Mingliang Xu, 2024. "ZmGDIα-hel counters the RBSDV-induced reduction of active gibberellins to alleviate maize rough dwarf virus disease," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Lei Xu & Yanchao Xu & Huanhuan Lv & Yanran Xu & Jiangqi Wen & Mingna Li & Junmei Kang & Zhipeng Liu & Qingchuan Yang & Ruicai Long, 2024. "Transcriptomic Analysis Reveals the Mechanism of MtLOX24 in Response to Methyl Jasmonate Stress in Medicago truncatula," Agriculture, MDPI, vol. 14(7), pages 1-20, July.
    3. Yogev Burko & Björn Christopher Willige & Adam Seluzicki & Ondřej Novák & Karin Ljung & Joanne Chory, 2022. "PIF7 is a master regulator of thermomorphogenesis in shade," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53894-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.