IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53883-1.html
   My bibliography  Save this article

Mapping membrane biophysical nano-environments

Author

Listed:
  • Luca Panconi

    (University of Birmingham
    University of Birmingham
    University of Birmingham)

  • Jonas Euchner

    (University of Birmingham
    University of Birmingham
    University of Birmingham)

  • Stanimir A. Tashev

    (University of Birmingham
    University of Birmingham
    University of Birmingham)

  • Maria Makarova

    (University of Birmingham
    University of Birmingham
    University of Birmingham)

  • Dirk-Peter Herten

    (University of Birmingham
    University of Birmingham
    University of Birmingham)

  • Dylan M. Owen

    (University of Birmingham
    University of Birmingham
    University of Birmingham)

  • Daniel J. Nieves

    (University of Birmingham
    University of Birmingham)

Abstract

The mammalian plasma membrane is known to contain domains with varying lipid composition and biophysical properties. However, studying these membrane lipid domains presents challenges due to their predicted morphological similarity to the bulk membrane and their scale being below the classical resolution limit of optical microscopy. To address this, we combine the solvatochromic probe di-4-ANEPPDHQ, which reports on its biophysical environment through changes in its fluorescence emission, with spectrally resolved single-molecule localisation microscopy. The resulting data comprises nanometre-precision localisation coordinates and a generalised polarisation value related to the probe’s environment – a marked point pattern. We introduce quantification algorithms based on topological data analysis (PLASMA) to detect and map nano-domains in this marked data, demonstrating their effectiveness in both artificial membranes and live cells. By leveraging environmentally sensitive fluorophores, multi-modal single molecule localisation microscopy, and advanced analysis methods, we achieve nanometre scale mapping of membrane properties and assess changes in response to external perturbation with methyl-β-cyclodextrin. This integrated methodology represents an integrated toolset for investigating marked point pattern data at nanometre spatial scales.

Suggested Citation

  • Luca Panconi & Jonas Euchner & Stanimir A. Tashev & Maria Makarova & Dirk-Peter Herten & Dylan M. Owen & Daniel J. Nieves, 2024. "Mapping membrane biophysical nano-environments," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53883-1
    DOI: 10.1038/s41467-024-53883-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53883-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53883-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dylan M. Owen & David J. Williamson & Astrid Magenau & Katharina Gaus, 2012. "Sub-resolution lipid domains exist in the plasma membrane and regulate protein diffusion and distribution," Nature Communications, Nature, vol. 3(1), pages 1-8, January.
    2. Juliette Griffié & Ruby Peters & Dylan M Owen, 2020. "An agent-based model of molecular aggregation at the cell membrane," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-17, February.
    3. Marie N. Bongiovanni & Julien Godet & Mathew H. Horrocks & Laura Tosatto & Alexander R. Carr & David C. Wirthensohn & Rohan T. Ranasinghe & Ji-Eun Lee & Aleks Ponjavic & Joelle V. Fritz & Christopher , 2016. "Multi-dimensional super-resolution imaging enables surface hydrophobicity mapping," Nature Communications, Nature, vol. 7(1), pages 1-9, December.
    4. Christian Eggeling & Christian Ringemann & Rebecca Medda & Günter Schwarzmann & Konrad Sandhoff & Svetlana Polyakova & Vladimir N. Belov & Birka Hein & Claas von Middendorff & Andreas Schönle & Stefan, 2009. "Direct observation of the nanoscale dynamics of membrane lipids in a living cell," Nature, Nature, vol. 457(7233), pages 1159-1162, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marta Ukleja & Lara Kricks & Gabriel Torrens & Ilaria Peschiera & Ines Rodrigues-Lopes & Marcin Krupka & Julia García-Fernández & Roberto Melero & Rosa Campo & Ana Eulalio & André Mateus & María López, 2024. "Flotillin-mediated stabilization of unfolded proteins in bacterial membrane microdomains," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    2. Lucas J. Handlin & Gucan Dai, 2023. "Direct regulation of the voltage sensor of HCN channels by membrane lipid compartmentalization," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Nario Tomishige & Maaz Nasim & Motohide Murate & Brigitte Pollet & Pascal Didier & Julien Godet & Ludovic Richert & Yasushi Sako & Yves Mély & Toshihide Kobayashi, 2023. "HIV-1 Gag targeting to the plasma membrane reorganizes sphingomyelin-rich and cholesterol-rich lipid domains," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    4. Lucas J. Handlin & Natalie L. Macchi & Nicolas L. A. Dumaire & Lyuba Salih & Erin N. Lessie & Kyle S. McCommis & Aubin Moutal & Gucan Dai, 2024. "Membrane lipid nanodomains modulate HCN pacemaker channels in nociceptor DRG neurons," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    5. Falk Schneider & Pablo F. Cespedes & Narain Karedla & Michael L. Dustin & Marco Fritzsche, 2024. "Quantifying biomolecular organisation in membranes with brightness-transit statistics," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53883-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.