IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v3y2012i1d10.1038_ncomms2273.html
   My bibliography  Save this article

Sub-resolution lipid domains exist in the plasma membrane and regulate protein diffusion and distribution

Author

Listed:
  • Dylan M. Owen

    (Centre for Vascular Research and Australian Centre for Nanomedicine, University of New South Wales)

  • David J. Williamson

    (Centre for Vascular Research and Australian Centre for Nanomedicine, University of New South Wales)

  • Astrid Magenau

    (Centre for Vascular Research and Australian Centre for Nanomedicine, University of New South Wales)

  • Katharina Gaus

    (Centre for Vascular Research and Australian Centre for Nanomedicine, University of New South Wales)

Abstract

Lipid microdomains are postulated to regulate many membrane-associated processes but have remained highly controversial. Here we provide the first direct evidence that the plasma membrane of intact, live cells is comprised of a sub-resolution mixture of approximately 76% ordered and 24% disordered lipid domains, which correspond to liquid-ordered and -disordered model membranes. These measurements were based on the unmixing of fluorescence lifetime decays (phasor analysis) obtained from environmentally sensitive membrane dyes that report the degree of lipid packing. Using the transmembrane protein Linker for Activation of T cells (LAT) as an example, we demonstrate that association with ordered domains retarded LAT diffusion and decreased clustering in meso-scaled protein domains as analysed by super-resolution microscopy. Our data therefore propose a membrane model in which the majority of the plasma membrane is covered by cholesterol-dependent, ordered lipid domains that contribute to the non-random distribution and diffusion of membrane constituents.

Suggested Citation

  • Dylan M. Owen & David J. Williamson & Astrid Magenau & Katharina Gaus, 2012. "Sub-resolution lipid domains exist in the plasma membrane and regulate protein diffusion and distribution," Nature Communications, Nature, vol. 3(1), pages 1-8, January.
  • Handle: RePEc:nat:natcom:v:3:y:2012:i:1:d:10.1038_ncomms2273
    DOI: 10.1038/ncomms2273
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms2273
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms2273?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luca Panconi & Jonas Euchner & Stanimir A. Tashev & Maria Makarova & Dirk-Peter Herten & Dylan M. Owen & Daniel J. Nieves, 2024. "Mapping membrane biophysical nano-environments," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Marta Ukleja & Lara Kricks & Gabriel Torrens & Ilaria Peschiera & Ines Rodrigues-Lopes & Marcin Krupka & Julia García-Fernández & Roberto Melero & Rosa Campo & Ana Eulalio & André Mateus & María López, 2024. "Flotillin-mediated stabilization of unfolded proteins in bacterial membrane microdomains," Nature Communications, Nature, vol. 15(1), pages 1-21, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:3:y:2012:i:1:d:10.1038_ncomms2273. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.