IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53600-y.html
   My bibliography  Save this article

Quantized current steps due to the synchronization of microwaves with Bloch oscillations in small Josephson junctions

Author

Listed:
  • Rais S. Shaikhaidarov

    (Royal Holloway University of London
    National Physical Laboratory)

  • Kyung Ho Kim

    (Royal Holloway University of London)

  • Jacob Dunstan

    (Royal Holloway University of London)

  • Ilya Antonov

    (Royal Holloway University of London
    National Physical Laboratory)

  • Dmitry Golubev

    (HQS Quantum Simulations GmbH
    QTF Centre of Excellence)

  • Vladimir N. Antonov

    (Royal Holloway University of London)

  • Oleg V. Astafiev

    (Royal Holloway University of London
    Skolkovo Institute of Science and Technology)

Abstract

Synchronization of Bloch oscillations in small Josephson junctions (JJs) under microwave radiation, which leads to current quantization, has been proposed as an effect that is dual to the appearance of Shapiro steps. This current quantization was recently demonstrated in superconducting nanowires in a compact high-impedance environment. Direct observation of current quantization in JJs would confirm the synchronization of Bloch oscillations with microwaves and help with the realisation of the metrological current standard. Here, we place JJs in a high-impedance environment and demonstrate dual Shapiro steps for frequencies up to 24 GHz (I = 7.7 nA). Current quantization exists, however, only in a narrow range of JJ parameters. We carry out a systematic study to explain this by invoking the model of a JJ in the presence of thermal noise. The findings are important for fundamental physics and application in quantum metrology.

Suggested Citation

  • Rais S. Shaikhaidarov & Kyung Ho Kim & Jacob Dunstan & Ilya Antonov & Dmitry Golubev & Vladimir N. Antonov & Oleg V. Astafiev, 2024. "Quantized current steps due to the synchronization of microwaves with Bloch oscillations in small Josephson junctions," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53600-y
    DOI: 10.1038/s41467-024-53600-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53600-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53600-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rais S. Shaikhaidarov & Kyung Ho Kim & Jacob W. Dunstan & Ilya V. Antonov & Sven Linzen & Mario Ziegler & Dmitry S. Golubev & Vladimir N. Antonov & Evgeni V. Il’ichev & Oleg V. Astafiev, 2022. "Quantized current steps due to the a.c. coherent quantum phase-slip effect," Nature, Nature, vol. 608(7921), pages 45-49, August.
    2. Fabian Kaap & Christoph Kissling & Victor Gaydamachenko & Lukas Grünhaupt & Sergey Lotkhov, 2024. "Demonstration of dual Shapiro steps in small Josephson junctions," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    3. M. Lucas & A. V. Danilov & L. V. Levitin & A. Jayaraman & A. J. Casey & L. Faoro & A. Ya. Tzalenchuk & S. E. Kubatkin & J. Saunders & S. E. de Graaf, 2023. "Quantum bath suppression in a superconducting circuit by immersion cooling," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabian Kaap & Christoph Kissling & Victor Gaydamachenko & Lukas Grünhaupt & Sergey Lotkhov, 2024. "Demonstration of dual Shapiro steps in small Josephson junctions," Nature Communications, Nature, vol. 15(1), pages 1-6, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53600-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.