IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53011-z.html
   My bibliography  Save this article

Demonstration of dual Shapiro steps in small Josephson junctions

Author

Listed:
  • Fabian Kaap

    (Physikalisch-Technische Bundesanstalt)

  • Christoph Kissling

    (Physikalisch-Technische Bundesanstalt)

  • Victor Gaydamachenko

    (Physikalisch-Technische Bundesanstalt)

  • Lukas Grünhaupt

    (Physikalisch-Technische Bundesanstalt)

  • Sergey Lotkhov

    (Physikalisch-Technische Bundesanstalt)

Abstract

Bloch oscillations in small Josephson junctions were predicted theoretically as the quantum dual to Josephson oscillations. A significant consequence of this prediction is the emergence of quantized current steps, so-called dual Shapiro steps, when synchronizing Bloch oscillations to an external microwave signal. These steps potentially enable a fundamental standard of current I, defined via the frequency f of the external signal and the elementary charge e, I = ± n × 2ef, where n is a natural number. Here, we realize this fundamental relation by synchronizing the Bloch oscillations in small Al/AlOx/Al Josephson junctions to sinusoidal drives with frequencies from 1 to 6 GHz and observe dual Shapiro steps up to I ≈ 3 nA. Inspired by today’s voltage standards and to further confirm the duality relation, we investigate a pulsed drive regime and observe an asymmetric pattern of dual Shapiro steps. This work confirms quantum duality effects in Josephson junctions and paves the way towards a range of applications in quantum metrology based on well-established fabrication techniques and straightforward circuit design.

Suggested Citation

  • Fabian Kaap & Christoph Kissling & Victor Gaydamachenko & Lukas Grünhaupt & Sergey Lotkhov, 2024. "Demonstration of dual Shapiro steps in small Josephson junctions," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53011-z
    DOI: 10.1038/s41467-024-53011-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53011-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53011-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. N. Maleeva & L. Grünhaupt & T. Klein & F. Levy-Bertrand & O. Dupre & M. Calvo & F. Valenti & P. Winkel & F. Friedrich & W. Wernsdorfer & A. V. Ustinov & H. Rotzinger & A. Monfardini & M. V. Fistul & I, 2018. "Circuit quantum electrodynamics of granular aluminum resonators," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    2. Ioan M. Pop & Kurtis Geerlings & Gianluigi Catelani & Robert J. Schoelkopf & Leonid I. Glazman & Michel H. Devoret, 2014. "Coherent suppression of electromagnetic dissipation due to superconducting quasiparticles," Nature, Nature, vol. 508(7496), pages 369-372, April.
    3. Rais S. Shaikhaidarov & Kyung Ho Kim & Jacob W. Dunstan & Ilya V. Antonov & Sven Linzen & Mario Ziegler & Dmitry S. Golubev & Vladimir N. Antonov & Evgeni V. Il’ichev & Oleg V. Astafiev, 2022. "Quantized current steps due to the a.c. coherent quantum phase-slip effect," Nature, Nature, vol. 608(7921), pages 45-49, August.
    4. Ivan V. Pechenezhskiy & Raymond A. Mencia & Long B. Nguyen & Yen-Hsiang Lin & Vladimir E. Manucharyan, 2020. "The superconducting quasicharge qubit," Nature, Nature, vol. 585(7825), pages 368-371, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rais S. Shaikhaidarov & Kyung Ho Kim & Jacob Dunstan & Ilya Antonov & Dmitry Golubev & Vladimir N. Antonov & Oleg V. Astafiev, 2024. "Quantized current steps due to the synchronization of microwaves with Bloch oscillations in small Josephson junctions," Nature Communications, Nature, vol. 15(1), pages 1-6, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. F. Hassani & M. Peruzzo & L. N. Kapoor & A. Trioni & M. Zemlicka & J. M. Fink, 2023. "Inductively shunted transmons exhibit noise insensitive plasmon states and a fluxon decay exceeding 3 hours," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Xianchuang Pan & Yuxuan Zhou & Haolan Yuan & Lifu Nie & Weiwei Wei & Libo Zhang & Jian Li & Song Liu & Zhi Hao Jiang & Gianluigi Catelani & Ling Hu & Fei Yan & Dapeng Yu, 2022. "Engineering superconducting qubits to reduce quasiparticles and charge noise," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    3. Diego Subero & Olivier Maillet & Dmitry S. Golubev & George Thomas & Joonas T. Peltonen & Bayan Karimi & Marco Marín-Suárez & Alfredo Levy Yeyati & Rafael Sánchez & Sunghun Park & Jukka P. Pekola, 2023. "Bolometric detection of Josephson inductance in a highly resistive environment," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Johannes Koch & Geram R. Hunanyan & Till Ockenfels & Enrique Rico & Enrique Solano & Martin Weitz, 2023. "Quantum Rabi dynamics of trapped atoms far in the deep strong coupling regime," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Shingo Kono & Jiahe Pan & Mahdi Chegnizadeh & Xuxin Wang & Amir Youssefi & Marco Scigliuzzo & Tobias J. Kippenberg, 2024. "Mechanically induced correlated errors on superconducting qubits with relaxation times exceeding 0.4 ms," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Rais S. Shaikhaidarov & Kyung Ho Kim & Jacob Dunstan & Ilya Antonov & Dmitry Golubev & Vladimir N. Antonov & Oleg V. Astafiev, 2024. "Quantized current steps due to the synchronization of microwaves with Bloch oscillations in small Josephson junctions," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    7. Eric Hyyppä & Suman Kundu & Chun Fai Chan & András Gunyhó & Juho Hotari & David Janzso & Kristinn Juliusson & Olavi Kiuru & Janne Kotilahti & Alessandro Landra & Wei Liu & Fabian Marxer & Akseli Mäkin, 2022. "Unimon qubit," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53011-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.