IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53507-8.html
   My bibliography  Save this article

Targeting the hypothalamus for modeling age-related DNA methylation and developing OXT-GnRH combinational therapy against Alzheimer’s disease-like pathologies in male mouse model

Author

Listed:
  • Salman Sadullah Usmani

    (Albert Einstein College of Medicine)

  • Hyun-Gug Jung

    (Albert Einstein College of Medicine)

  • Qichao Zhang

    (Albert Einstein College of Medicine)

  • Min Woo Kim

    (Albert Einstein College of Medicine)

  • Yuna Choi

    (Albert Einstein College of Medicine)

  • Ahmet Burak Caglayan

    (Albert Einstein College of Medicine)

  • Dongsheng Cai

    (Albert Einstein College of Medicine)

Abstract

The hypothalamus plays an important role in aging, but it remains unclear regarding the underlying epigenetics and whether this hypothalamic basis can help address aging-related diseases. Here, by comparing mouse hypothalamus with two other limbic system components, we show that the hypothalamus is characterized by distinctively high-level DNA methylation during young age and by the distinct dynamics of DNA methylation and demethylation when approaching middle age. On the other hand, age-related DNA methylation in these limbic system components commonly and sensitively applies to genes in hypothalamic regulatory pathways, notably oxytocin (OXT) and gonadotropin-releasing hormone (GnRH) pathways. Middle age is associated with transcriptional declines of genes which encode OXT, GnRH and signaling components, which similarly occur in an Alzheimer’s disease (AD)-like model. Therapeutically, OXT-GnRH combination is substantially more effective than individual peptides in treating AD-like disorders in male 5×FAD model. In conclusion, the hypothalamus is important for modeling age-related DNA methylation and developing hypothalamic strategies to combat AD.

Suggested Citation

  • Salman Sadullah Usmani & Hyun-Gug Jung & Qichao Zhang & Min Woo Kim & Yuna Choi & Ahmet Burak Caglayan & Dongsheng Cai, 2024. "Targeting the hypothalamus for modeling age-related DNA methylation and developing OXT-GnRH combinational therapy against Alzheimer’s disease-like pathologies in male mouse model," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53507-8
    DOI: 10.1038/s41467-024-53507-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53507-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53507-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sara Zocher & Rupert W. Overall & Mathias Lesche & Andreas Dahl & Gerd Kempermann, 2021. "Environmental enrichment preserves a young DNA methylation landscape in the aged mouse hippocampus," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    2. Henriette van Praag & Alejandro F. Schinder & Brian R. Christie & Nicolas Toni & Theo D. Palmer & Fred H. Gage, 2002. "Functional neurogenesis in the adult hippocampus," Nature, Nature, vol. 415(6875), pages 1030-1034, February.
    3. Guo Zhang & Juxue Li & Sudarshana Purkayastha & Yizhe Tang & Hai Zhang & Ye Yin & Bo Li & Gang Liu & Dongsheng Cai, 2013. "Hypothalamic programming of systemic ageing involving IKK-β, NF-κB and GnRH," Nature, Nature, vol. 497(7448), pages 211-216, May.
    4. Yalin Zhang & Min Soo Kim & Baosen Jia & Jingqi Yan & Juan Pablo Zuniga-Hertz & Cheng Han & Dongsheng Cai, 2017. "Hypothalamic stem cells control ageing speed partly through exosomal miRNAs," Nature, Nature, vol. 548(7665), pages 52-57, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raúl F. Pérez & Patricia Tezanos & Alfonso Peñarroya & Alejandro González-Ramón & Rocío G. Urdinguio & Javier Gancedo-Verdejo & Juan Ramón Tejedor & Pablo Santamarina-Ojeda & Juan José Alba-Linares & , 2024. "A multiomic atlas of the aging hippocampus reveals molecular changes in response to environmental enrichment," Nature Communications, Nature, vol. 15(1), pages 1-26, December.
    2. Xiaoxue Jiang & Kan liu & Peixiang Luo & Zi Li & Fei Xiao & Haizhou Jiang & Shangming Wu & Min Tang & Feixiang Yuan & Xiaoying Li & Yousheng Shu & Bo Peng & Shanghai Chen & Shihong Ni & Feifan Guo, 2024. "Hypothalamic SLC7A14 accounts for aging-reduced lipolysis in white adipose tissue of male mice," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Wen-Chung Liu & Chih-Wei Wu & Pi-Lien Hung & Julie Y. H. Chan & You-Lin Tain & Mu-Hui Fu & Lee-Wei Chen & Chih-Kuang Liang & Chun-Ying Hung & Hong-Ren Yu & I-Chun Chen & Kay L.H. Wu, 2020. "Environmental Stimulation Counteracts the Suppressive Effects of Maternal High-Fructose Diet on Cell Proliferation and Neuronal Differentiation in the Dentate Gyrus of Adult Female Offspring via Histo," IJERPH, MDPI, vol. 17(11), pages 1-15, June.
    4. Lucas A Mongiat & M Soledad Espósito & Gabriela Lombardi & Alejandro F Schinder, 2009. "Reliable Activation of Immature Neurons in the Adult Hippocampus," PLOS ONE, Public Library of Science, vol. 4(4), pages 1-11, April.
    5. Nicola Alessio & Anna Lisa Brigida & Gianfranco Peluso & Nicola Antonucci & Umberto Galderisi & Dario Siniscalco, 2020. "Stem Cell-Derived Exosomes in Autism Spectrum Disorder," IJERPH, MDPI, vol. 17(3), pages 1-10, February.
    6. P. Bielefeld & A. Martirosyan & S. Martín-Suárez & A. Apresyan & G. F. Meerhoff & F. Pestana & S. Poovathingal & N. Reijner & W. Koning & R. A. Clement & I. Veen & E. M. Toledo & O. Polzer & I. Durá &, 2024. "Traumatic brain injury promotes neurogenesis at the cost of astrogliogenesis in the adult hippocampus of male mice," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    7. Zhen-Xing Wang & Zhong-Wei Luo & Fu-Xing-Zi Li & Jia Cao & Shan-Shan Rao & Yi-Wei Liu & Yi-Yi Wang & Guo-Qiang Zhu & Jiang-Shan Gong & Jing-Tao Zou & Qiang Wang & Yi-Juan Tan & Yan Zhang & Yin Hu & Yo, 2022. "Aged bone matrix-derived extracellular vesicles as a messenger for calcification paradox," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    8. Kai Diederich & Wolf-Rüdiger Schäbitz & Katharina Kuhnert & Nina Hellström & Norbert Sachser & Armin Schneider & Hans-Georg Kuhn & Stefan Knecht, 2009. "Synergetic Effects of Granulocyte-Colony Stimulating Factor and Cognitive Training on Spatial Learning and Survival of Newborn Hippocampal Neurons," PLOS ONE, Public Library of Science, vol. 4(4), pages 1-7, April.
    9. James O Groves & Isla Leslie & Guo-Jen Huang & Stephen B McHugh & Amy Taylor & Richard Mott & Marcus Munafò & David M Bannerman & Jonathan Flint, 2013. "Ablating Adult Neurogenesis in the Rat Has No Effect on Spatial Processing: Evidence from a Novel Pharmacogenetic Model," PLOS Genetics, Public Library of Science, vol. 9(9), pages 1-16, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53507-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.