Hardware-accelerated integrated optoelectronic platform towards real-time high-resolution hyperspectral video understanding
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-024-51406-6
Download full text from publisher
References listed on IDEAS
- Chuhan Wu & Fangzhao Wu & Lingjuan Lyu & Tao Qi & Yongfeng Huang & Xing Xie, 2022. "A federated graph neural network framework for privacy-preserving personalization," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
- Michael Moor & Oishi Banerjee & Zahra Shakeri Hossein Abad & Harlan M. Krumholz & Jure Leskovec & Eric J. Topol & Pranav Rajpurkar, 2023. "Foundation models for generalist medical artificial intelligence," Nature, Nature, vol. 616(7956), pages 259-265, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Junwei Cheng & Chaoran Huang & Jialong Zhang & Bo Wu & Wenkai Zhang & Xinyu Liu & Jiahui Zhang & Yiyi Tang & Hailong Zhou & Qiming Zhang & Min Gu & Jianji Dong & Xinliang Zhang, 2024. "Multimodal deep learning using on-chip diffractive optics with in situ training capability," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Shengyu Tao & Haizhou Liu & Chongbo Sun & Haocheng Ji & Guanjun Ji & Zhiyuan Han & Runhua Gao & Jun Ma & Ruifei Ma & Yuou Chen & Shiyi Fu & Yu Wang & Yaojie Sun & Yu Rong & Xuan Zhang & Guangmin Zhou , 2023. "Collaborative and privacy-preserving retired battery sorting for profitable direct recycling via federated machine learning," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
- Soroosh Tayebi Arasteh & Tianyu Han & Mahshad Lotfinia & Christiane Kuhl & Jakob Nikolas Kather & Daniel Truhn & Sven Nebelung, 2024. "Large language models streamline automated machine learning for clinical studies," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Weijian Huang & Cheng Li & Hong-Yu Zhou & Hao Yang & Jiarun Liu & Yong Liang & Hairong Zheng & Shaoting Zhang & Shanshan Wang, 2024. "Enhancing representation in radiography-reports foundation model: a granular alignment algorithm using masked contrastive learning," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51406-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.