IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53361-8.html
   My bibliography  Save this article

Body orientation change of neighbors leads to scale-free correlation in collective motion

Author

Listed:
  • Zhicheng Zheng

    (Northwestern Polytechnical University)

  • Yuan Tao

    (Northwestern Polytechnical University)

  • Yalun Xiang

    (Northwestern Polytechnical University)

  • Xiaokang Lei

    (Xi’an University of Architecture and Technology)

  • Xingguang Peng

    (Northwestern Polytechnical University)

Abstract

Collective motion, such as milling, flocking, and collective turning, is a common and captivating phenomenon in nature, which arises in a group of many self-propelled individuals using local interaction mechanisms. Recently, vision-based mechanisms, which establish the relationship between visual inputs and motion decisions, have been applied to model and better understand the emergence of collective motion. However, previous studies often characterize the visual input as a transient Boolean-like sensory stream, which makes it challenging to capture the salient movements of neighbors. This further hinders the onset of the collective response in vision-based mechanisms and increases demands on visual sensing devices in robotic swarms. An explicit and context-related visual cue serving as the sensory input for decision-making in vision-based mechanisms is still lacking. Here, we hypothesize that body orientation change (BOC) is a significant visual cue characterizing the motion salience of neighbors, facilitating the emergence of the collective response. To test our hypothesis, we reveal the significant role of BOC during collective U-turn behaviors in fish schools by reconstructing scenes from the view of individual fish. We find that an individual with the larger BOC often takes on the leading role during U-turns. To further explore this empirical finding, we build a pairwise interaction mechanism on the basis of the BOC. Then, we conduct experiments of collective spin and collective turn with a real-time physics simulator to investigate the dynamics of information transfer in BOC-based interaction and further validate its effectiveness on 50 real miniature swarm robots. The experimental results show that BOC-based interaction not only facilitates the directional information transfer within the group but also leads to scale-free correlation within the swarm. Our study highlights the practicability of interaction governed by the neighbor’s body orientation change in swarm robotics and the effect of scale-free correlation in enhancing collective response.

Suggested Citation

  • Zhicheng Zheng & Yuan Tao & Yalun Xiang & Xiaokang Lei & Xingguang Peng, 2024. "Body orientation change of neighbors leads to scale-free correlation in collective motion," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53361-8
    DOI: 10.1038/s41467-024-53361-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53361-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53361-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Máté Nagy & Zsuzsa Ákos & Dora Biro & Tamás Vicsek, 2010. "Hierarchical group dynamics in pigeon flocks," Nature, Nature, vol. 464(7290), pages 890-893, April.
    2. Roy Harpaz & Minh Nguyet Nguyen & Armin Bahl & Florian Engert, 2021. "Precise visuomotor transformations underlying collective behavior in larval zebrafish," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    3. Zhang, Shuai & Lei, Xiaokang & Zheng, Zhicheng & Peng, Xingguang, 2022. "Collective fission behavior in swarming systems with density-based interaction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li Jiang & Luca Giuggioli & Andrea Perna & Ramón Escobedo & Valentin Lecheval & Clément Sire & Zhangang Han & Guy Theraulaz, 2017. "Identifying influential neighbors in animal flocking," PLOS Computational Biology, Public Library of Science, vol. 13(11), pages 1-32, November.
    2. Zhou, Yongjian & Wang, Tao & Wang, Tonghao & Lei, Xiaokang & Peng, Xingguang, 2024. "Anticipation promotes the velocity alignment in collective motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    3. Liang, Rizhou & Zhang, Jiqiang & Zheng, Guozhong & Chen, Li, 2021. "Social hierarchy promotes the cooperation prevalence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    4. Carlo Bianca & Marco Menale, 2019. "A Convergence Theorem for the Nonequilibrium States in the Discrete Thermostatted Kinetic Theory," Mathematics, MDPI, vol. 7(8), pages 1-13, July.
    5. Gergely Tibély & David Sousa-Rodrigues & Péter Pollner & Gergely Palla, 2016. "Comparing the Hierarchy of Keywords in On-Line News Portals," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-15, November.
    6. Tamás Nepusz & Tamás Vicsek, 2013. "Hierarchical Self-Organization of Non-Cooperating Individuals," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-9, December.
    7. Roy Harpaz & Minh Nguyet Nguyen & Armin Bahl & Florian Engert, 2021. "Precise visuomotor transformations underlying collective behavior in larval zebrafish," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    8. Li, Qing & Zhang, Lingwei & Jia, Yongnan & Lu, Tianzhao & Chen, Xiaojie, 2022. "Modeling, analysis, and optimization of three-dimensional restricted visual field metric-free swarms," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    9. Zhang, Jiu & Jin, Li-Fu & Zheng, Bo & Li, Yan & Jiang, Xiong-Fei, 2022. "Simplified calculations of time correlation functions in non-stationary complex financial systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    10. Panpan Yang & Maode Yan & Jiacheng Song & Ye Tang, 2019. "Self-Organized Fission-Fusion Control Algorithm for Flocking Systems Based on Intermittent Selective Interaction," Complexity, Hindawi, vol. 2019, pages 1-12, February.
    11. Pakpour, Fatemeh & Vicsek, Tamás, 2024. "Delay-induced phase transitions in active matter," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
    12. Partha S Bhagavatula & Charles Claudianos & Michael R Ibbotson & Mandyam V Srinivasan, 2014. "Behavioral Lateralization and Optimal Route Choice in Flying Budgerigars," PLOS Computational Biology, Public Library of Science, vol. 10(3), pages 1-13, March.
    13. Néstor Sepúlveda & Laurence Petitjean & Olivier Cochet & Erwan Grasland-Mongrain & Pascal Silberzan & Vincent Hakim, 2013. "Collective Cell Motion in an Epithelial Sheet Can Be Quantitatively Described by a Stochastic Interacting Particle Model," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-12, March.
    14. Guang-Hui Xu & Meng Xu & Ming-Feng Ge & Teng-Fei Ding & Feng Qi & Meng Li, 2020. "Distributed Event-Based Control of Hierarchical Leader-Follower Networks with Time-Varying Layer-To-Layer Delays," Energies, MDPI, vol. 13(7), pages 1-14, April.
    15. Yandong Xiao & Xiaokang Lei & Zhicheng Zheng & Yalun Xiang & Yang-Yu Liu & Xingguang Peng, 2024. "Perception of motion salience shapes the emergence of collective motions," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    16. Yilun Shang & Yamei Ye, 2017. "Leader-Follower Fixed-Time Group Consensus Control of Multiagent Systems under Directed Topology," Complexity, Hindawi, vol. 2017, pages 1-9, March.
    17. Nauta, Johannes & Simoens, Pieter & Khaluf, Yara, 2022. "Group size and resource fractality drive multimodal search strategies: A quantitative analysis on group foraging," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).
    18. Guy Amichay & Liang Li & Máté Nagy & Iain D. Couzin, 2024. "Revealing the mechanism and function underlying pairwise temporal coupling in collective motion," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    19. Zafeiris, Anna & Koman, Zsombor & Mones, Enys & Vicsek, Tamás, 2017. "Phenomenological theory of collective decision-making," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 287-298.
    20. Li, Wang & Dai, Haifeng & Zhao, Lingzhi & Zhao, Donghua & Sun, Yongzheng, 2023. "Noise-induced consensus of leader-following multi-agent systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 1-11.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53361-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.