IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53352-9.html
   My bibliography  Save this article

Introducing edge intelligence to smart meters via federated split learning

Author

Listed:
  • Yehui Li

    (The University of Hong Kong)

  • Dalin Qin

    (The University of Hong Kong)

  • H. Vincent Poor

    (Princeton University)

  • Yi Wang

    (The University of Hong Kong)

Abstract

The ubiquitous smart meters are expected to be a central feature of future smart grids because they enable the collection of massive amounts of fine-grained consumption data to support demand-side flexibility. However, current smart meters are not smart enough. They can only perform basic data collection and communication functions and cannot carry out on-device intelligent data analytics due to hardware constraints in terms of memory, computation, and communication capacity. Moreover, privacy concerns have hindered the utilization of data from distributed smart meters. Here, we present an end-edge-cloud federated split learning framework to enable collaborative model training on resource-constrained smart meters with the assistance of edge and cloud servers in a resource-efficient and privacy-enhancing manner. The proposed method is validated on a hardware platform to conduct building and household load forecasting on smart meters that only have 192 KB of static random-access memory (SRAM). We show that the proposed method can reduce the memory footprint by 95.5%, the training time by 94.8%, and the communication burden by 50% under the distributed learning framework and can achieve comparable or superior forecasting accuracy to that of conventional methods trained on high-capacity servers.

Suggested Citation

  • Yehui Li & Dalin Qin & H. Vincent Poor & Yi Wang, 2024. "Introducing edge intelligence to smart meters via federated split learning," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53352-9
    DOI: 10.1038/s41467-024-53352-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53352-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53352-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Bin & Li, Wentao & Chan, Ka Wing & Cao, Yijia & Kuang, Yonghong & Liu, Xi & Wang, Xiong, 2016. "Smart home energy management systems: Concept, configurations, and scheduling strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 30-40.
    2. Carissa Véliz & Philipp Grunewald, 2018. "Protecting data privacy is key to a smart energy future," Nature Energy, Nature, vol. 3(9), pages 702-704, September.
    3. Sarthak Pati & Ujjwal Baid & Brandon Edwards & Micah Sheller & Shih-Han Wang & G. Anthony Reina & Patrick Foley & Alexey Gruzdev & Deepthi Karkada & Christos Davatzikos & Chiharu Sako & Satyam Ghodasa, 2022. "Federated learning enables big data for rare cancer boundary detection," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    4. Shivam Kalra & Junfeng Wen & Jesse C. Cresswell & Maksims Volkovs & H. R. Tizhoosh, 2023. "Decentralized federated learning through proxy model sharing," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Alejandro Pena-Bello & David Parra & Mario Herberz & Verena Tiefenbeck & Martin K. Patel & Ulf J. J. Hahnel, 2022. "Integration of prosumer peer-to-peer trading decisions into energy community modelling," Nature Energy, Nature, vol. 7(1), pages 74-82, January.
    6. Na (Nora) Wang, 2018. "Transactive control for connected homes and neighbourhoods," Nature Energy, Nature, vol. 3(11), pages 907-909, November.
    7. Michael Wolinetz & Jonn Axsen & Jotham Peters & Curran Crawford, 2018. "Simulating the value of electric-vehicle–grid integration using a behaviourally realistic model," Nature Energy, Nature, vol. 3(2), pages 132-139, February.
    8. Thomas Morstyn & Niall Farrell & Sarah J. Darby & Malcolm D. McCulloch, 2018. "Using peer-to-peer energy-trading platforms to incentivize prosumers to form federated power plants," Nature Energy, Nature, vol. 3(2), pages 94-101, February.
    9. Cai, Qiran & Xu, Qingyang & Qing, Jing & Shi, Gang & Liang, Qiao-Mei, 2022. "Promoting wind and photovoltaics renewable energy integration through demand response: Dynamic pricing mechanism design and economic analysis for smart residential communities," Energy, Elsevier, vol. 261(PB).
    10. Dyson, Mark E.H. & Borgeson, Samuel D. & Tabone, Michaelangelo D. & Callaway, Duncan S., 2014. "Using smart meter data to estimate demand response potential, with application to solar energy integration," Energy Policy, Elsevier, vol. 73(C), pages 607-619.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Juan & Zheng, Junjun & Yu, Liukai & Goh, Mark & Tang, Yunying & Huang, Yongchao, 2023. "Distributed Reputation-Distance iterative auction system for Peer-To-Peer power trading," Applied Energy, Elsevier, vol. 345(C).
    2. Edward H. Lee & Michelle Han & Jason Wright & Michael Kuwabara & Jacob Mevorach & Gang Fu & Olivia Choudhury & Ujjwal Ratan & Michael Zhang & Matthias W. Wagner & Robert Goetti & Sebastian Toescu & Se, 2024. "An international study presenting a federated learning AI platform for pediatric brain tumors," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Xia, Yuanxing & Xu, Qingshan & Li, Fangxing, 2023. "Grid-friendly pricing mechanism for peer-to-peer energy sharing market diffusion in communities," Applied Energy, Elsevier, vol. 334(C).
    4. Kristie Kaminski Küster & Daniel Gebbran & Alexandre Rasi Aoki & Germano Lambert-Torres & Daniel Navarro-Gevers & Patrício Rodolfo Impinisi & Cleverson Luiz da Silva Pinto, 2023. "Adoption of Local Peer-to-Peer Energy Markets: Technical and Economical Perspectives for Utilities," Energies, MDPI, vol. 16(5), pages 1-24, March.
    5. Sophie Adams & Donal Brown & Juan Pablo Cárdenas Álvarez & Ruzanna Chitchyan & Michael J. Fell & Ulf J. J. Hahnel & Kristina Hojckova & Charlotte Johnson & Lurian Klein & Mehdi Montakhabi & Kelvin Say, 2021. "Social and Economic Value in Emerging Decentralized Energy Business Models: A Critical Review," Energies, MDPI, vol. 14(23), pages 1-29, November.
    6. Park, Jungyeon & Alvarenga, Estêvão & Jeon, Jooyoung & Li, Ran & Petropoulos, Fotios & Kim, Hokyun & Ahn, Kwangwon, 2024. "Probabilistic forecast-based portfolio optimization of electricity demand at low aggregation levels," Applied Energy, Elsevier, vol. 353(PB).
    7. Alonso Pedrero, Raquel & Crespo del Granado, Pedro, 2023. "Assessing the impact of energy communities on retailers’ balancing positions in the power market," Energy, Elsevier, vol. 283(C).
    8. Kim, Hakpyeong & Choi, Heeju & Kang, Hyuna & An, Jongbaek & Yeom, Seungkeun & Hong, Taehoon, 2021. "A systematic review of the smart energy conservation system: From smart homes to sustainable smart cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    9. Dukovska, Irena & Slootweg, J.G. (Han) & Paterakis, Nikolaos G., 2023. "Introducing user preferences for peer-to-peer electricity trading through stochastic multi-objective optimization," Applied Energy, Elsevier, vol. 338(C).
    10. Flavio Martins & Maria Fatima Almeida & Rodrigo Calili & Agatha Oliveira, 2020. "Design Thinking Applied to Smart Home Projects: A User-Centric and Sustainable Perspective," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    11. Morstyn, Thomas & Collett, Katherine A. & Vijay, Avinash & Deakin, Matthew & Wheeler, Scot & Bhagavathy, Sivapriya M. & Fele, Filiberto & McCulloch, Malcolm D., 2020. "OPEN: An open-source platform for developing smart local energy system applications," Applied Energy, Elsevier, vol. 275(C).
    12. Fan, Wei & Tan, Zhongfu & Li, Fanqi & Zhang, Amin & Ju, Liwei & Wang, Yuwei & De, Gejirifu, 2023. "A two-stage optimal scheduling model of integrated energy system based on CVaR theory implementing integrated demand response," Energy, Elsevier, vol. 263(PC).
    13. Zhou, Yuekuan & Lund, Peter D., 2023. "Peer-to-peer energy sharing and trading of renewable energy in smart communities ─ trading pricing models, decision-making and agent-based collaboration," Renewable Energy, Elsevier, vol. 207(C), pages 177-193.
    14. Min-Hwi Kim & Dong-Won Lee & Deuk-Won Kim & Young-Sub An & Jae-Ho Yun, 2021. "Energy Performance Investigation of Bi-Directional Convergence Energy Prosumers for an Energy Sharing Community," Energies, MDPI, vol. 14(17), pages 1-17, September.
    15. Duarte Kazacos Winter & Rahul Khatri & Michael Schmidt, 2021. "Decentralized Prosumer-Centric P2P Electricity Market Coordination with Grid Security," Energies, MDPI, vol. 14(15), pages 1-17, August.
    16. Wang, Yubin & Dong, Wei & Yang, Qiang, 2022. "Multi-stage optimal energy management of multi-energy microgrid in deregulated electricity markets," Applied Energy, Elsevier, vol. 310(C).
    17. Jia, Kunqi & Guo, Ge & Xiao, Jucheng & Zhou, Huan & Wang, Zhihua & He, Guangyu, 2019. "Data compression approach for the home energy management system," Applied Energy, Elsevier, vol. 247(C), pages 643-656.
    18. D'Adamo, Idiano & Mammetti, Marco & Ottaviani, Dario & Ozturk, Ilhan, 2023. "Photovoltaic systems and sustainable communities: New social models for ecological transition. The impact of incentive policies in profitability analyses," Renewable Energy, Elsevier, vol. 202(C), pages 1291-1304.
    19. Kılkış, Şiir & Ulpiani, Giulia & Vetters, Nadja, 2024. "Visions for climate neutrality and opportunities for co-learning in European cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    20. Chien-Liang Chiu & I-Fan Hsiao & Lily Chang, 2023. "Overviewing Global Surface Temperature Changes Regarding CO 2 Emission, Population Density, and Energy Consumption in the Industry: Policy Suggestions," Sustainability, MDPI, vol. 15(8), pages 1-16, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53352-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.