IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i5p2364-d1085015.html
   My bibliography  Save this article

Adoption of Local Peer-to-Peer Energy Markets: Technical and Economical Perspectives for Utilities

Author

Listed:
  • Kristie Kaminski Küster

    (Department of Electrical Engineering, Federal University of Parana, Curitiba 81531-990, Brazil
    Lactec Institute, Curitiba 80215-090, Brazil)

  • Daniel Gebbran

    (Equilibrium Energy, Boston, MA 02116, USA)

  • Alexandre Rasi Aoki

    (Lactec Institute, Curitiba 80215-090, Brazil)

  • Germano Lambert-Torres

    (Gnarus Institute, Itajuba 37500-052, Brazil)

  • Daniel Navarro-Gevers

    (Institute of New Energy Systems (InES), Technische Hochschule Ingolstadt, 85049 Ingolstadt, Germany)

  • Patrício Rodolfo Impinisi

    (Department of Electrical Engineering, Federal University of Parana, Curitiba 81531-990, Brazil)

  • Cleverson Luiz da Silva Pinto

    (Companhia Paranaense de Energia, Curitiba 81200-240, Brazil)

Abstract

Peer-to-peer (P2P) energy markets constitute a promising approach for locally coordinating the increasing amount of distributed energy resources (DERs) in the distribution system. Although the benefits of P2P markets for the prosumers are already well understood, their impact on utilities is not well discussed nor well understood. This hinders the development of regulatory frameworks, which are still needed to allow for the widespread adoption of decentralized energy markets in any interested country. So far, research has been conducted in specific isolated aspects, making it difficult to understand the overall implications for utilities. The present study aims to tackle this research gap by comprehensively evaluating P2P markets’ effects, considering utilities as primary stakeholders. A qualitative roadmap with the overall benefits and challenges of adopting P2P by utilities is outlined to reach this purpose. Technical and economic criteria are assigned for comparing a P2P market to the current regulatory framework. Each criterion is evaluated in a co-simulation platform connecting a market model to a power flow model. Market performance is assessed by revenue analysis, and grid operation indicators evaluate grid performance. Furthermore, network fees are introduced as compensation mechanisms for the net revenue loss. Comparison scenarios encompass network fees and the number of agents, PV, and storage penetration. Results demonstrate that there is no possible benefit for both utilities and prosumers simultaneously if looking exclusively at the financial balance of the market. An equilibrium in benefits for all stakeholders is achievable if non-financial metrics are considered in an integrated market and fee structure analysis. Moreover, results demonstrate that the design of market structures must be sensitive to network configurations and DER penetration changes. This study contributes toward comprehending how the utilities could embrace P2P markets as a feasible solution for grid coordination challenges, opening a new set of questions for further research.

Suggested Citation

  • Kristie Kaminski Küster & Daniel Gebbran & Alexandre Rasi Aoki & Germano Lambert-Torres & Daniel Navarro-Gevers & Patrício Rodolfo Impinisi & Cleverson Luiz da Silva Pinto, 2023. "Adoption of Local Peer-to-Peer Energy Markets: Technical and Economical Perspectives for Utilities," Energies, MDPI, vol. 16(5), pages 1-24, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2364-:d:1085015
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/5/2364/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/5/2364/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dudjak, Viktorija & Neves, Diana & Alskaif, Tarek & Khadem, Shafi & Pena-Bello, Alejandro & Saggese, Pietro & Bowler, Benjamin & Andoni, Merlinda & Bertolini, Marina & Zhou, Yue & Lormeteau, Blanche &, 2021. "Impact of local energy markets integration in power systems layer: A comprehensive review," Applied Energy, Elsevier, vol. 301(C).
    2. Rövekamp, Patrick & Schöpf, Michael & Wagon, Felix & Weibelzahl, Martin & Fridgen, Gilbert, 2021. "Renewable electricity business models in a post feed-in tariff era," Energy, Elsevier, vol. 216(C).
    3. Yael Parag & Benjamin K. Sovacool, 2016. "Electricity market design for the prosumer era," Nature Energy, Nature, vol. 1(4), pages 1-6, April.
    4. Olamide Jogunola & Augustine Ikpehai & Kelvin Anoh & Bamidele Adebisi & Mohammad Hammoudeh & Sung-Yong Son & Georgina Harris, 2017. "State-Of-The-Art and Prospects for Peer-To-Peer Transaction-Based Energy System," Energies, MDPI, vol. 10(12), pages 1-28, December.
    5. Dynge, Marthe Fogstad & Crespo del Granado, Pedro & Hashemipour, Naser & Korpås, Magnus, 2021. "Impact of local electricity markets and peer-to-peer trading on low-voltage grid operations," Applied Energy, Elsevier, vol. 301(C).
    6. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K., 2020. "Investigating the impact of P2P trading on power losses in grid-connected networks with prosumers," Applied Energy, Elsevier, vol. 263(C).
    7. Sophie Adams & Donal Brown & Juan Pablo Cárdenas Álvarez & Ruzanna Chitchyan & Michael J. Fell & Ulf J. J. Hahnel & Kristina Hojckova & Charlotte Johnson & Lurian Klein & Mehdi Montakhabi & Kelvin Say, 2021. "Social and Economic Value in Emerging Decentralized Energy Business Models: A Critical Review," Energies, MDPI, vol. 14(23), pages 1-29, November.
    8. Askeland, Magnus & Backe, Stian & Bjarghov, Sigurd & Korpås, Magnus, 2021. "Helping end-users help each other: Coordinating development and operation of distributed resources through local power markets and grid tariffs," Energy Economics, Elsevier, vol. 94(C).
    9. Wittmayer, Julia M. & Avelino, Flor & Pel, Bonno & Campos, Inês, 2021. "Contributing to sustainable and just energy systems? The mainstreaming of renewable energy prosumerism within and across institutional logics," Energy Policy, Elsevier, vol. 149(C).
    10. Alejandro Pena-Bello & David Parra & Mario Herberz & Verena Tiefenbeck & Martin K. Patel & Ulf J. J. Hahnel, 2022. "Integration of prosumer peer-to-peer trading decisions into energy community modelling," Nature Energy, Nature, vol. 7(1), pages 74-82, January.
    11. Thomas Morstyn & Niall Farrell & Sarah J. Darby & Malcolm D. McCulloch, 2018. "Using peer-to-peer energy-trading platforms to incentivize prosumers to form federated power plants," Nature Energy, Nature, vol. 3(2), pages 94-101, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gorbatcheva, Anna & Watson, Nicole & Schneiders, Alexandra & Shipworth, David & Fell, Michael J., 2024. "Defining characteristics of peer-to-peer energy trading, transactive energy, and community self-consumption: A review of literature and expert perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    2. Zhou, Yuekuan & Lund, Peter D., 2023. "Peer-to-peer energy sharing and trading of renewable energy in smart communities ─ trading pricing models, decision-making and agent-based collaboration," Renewable Energy, Elsevier, vol. 207(C), pages 177-193.
    3. Chun Xia-Bauer & Florin Vondung & Stefan Thomas & Raphael Moser, 2022. "Business Model Innovations for Renewable Energy Prosumer Development in Germany," Sustainability, MDPI, vol. 14(13), pages 1-17, June.
    4. Mehdi Montakhabi & Ine Van Zeeland & Pieter Ballon, 2022. "Barriers for Prosumers’ Open Business Models: A Resource-Based View on Assets and Data-Sharing in Electricity Markets," Sustainability, MDPI, vol. 14(9), pages 1-29, May.
    5. Francesca Andreolli & Chiara D'Alpaos & Peter Kort, 2023. "Does P2P Trading Favor Investments in PV-Battery Systems?," Working Papers 2023.02, Fondazione Eni Enrico Mattei.
    6. Siripha Junlakarn & Phimsupha Kokchang & Kulyos Audomvongseree, 2022. "Drivers and Challenges of Peer-to-Peer Energy Trading Development in Thailand," Energies, MDPI, vol. 15(3), pages 1-25, February.
    7. Georgarakis, Elena & Bauwens, Thomas & Pronk, Anne-Marie & AlSkaif, Tarek, 2021. "Keep it green, simple and socially fair: A choice experiment on prosumers’ preferences for peer-to-peer electricity trading in the Netherlands," Energy Policy, Elsevier, vol. 159(C).
    8. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K. & Yuen, Chau & Smith, David, 2022. "Peer-to-peer kilowatt and negawatt trading: A review of challenges and recent advances in distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    9. Hahnel, Ulf J.J. & Fell, Michael J., 2022. "Pricing decisions in peer-to-peer and prosumer-centred electricity markets: Experimental analysis in Germany and the United Kingdom," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    10. Sousa, Tiago & Soares, Tiago & Pinson, Pierre & Moret, Fabio & Baroche, Thomas & Sorin, Etienne, 2019. "Peer-to-peer and community-based markets: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 367-378.
    11. Dynge, Marthe Fogstad & Crespo del Granado, Pedro & Hashemipour, Naser & Korpås, Magnus, 2021. "Impact of local electricity markets and peer-to-peer trading on low-voltage grid operations," Applied Energy, Elsevier, vol. 301(C).
    12. Arnob Das & Susmita Datta Peu & Md. Abdul Mannan Akanda & Abu Reza Md. Towfiqul Islam, 2023. "Peer-to-Peer Energy Trading Pricing Mechanisms: Towards a Comprehensive Analysis of Energy and Network Service Pricing (NSP) Mechanisms to Get Sustainable Enviro-Economical Energy Sector," Energies, MDPI, vol. 16(5), pages 1-27, February.
    13. Tushar, Wayes & Yuen, Chau & Saha, Tapan K. & Morstyn, Thomas & Chapman, Archie C. & Alam, M. Jan E. & Hanif, Sarmad & Poor, H. Vincent, 2021. "Peer-to-peer energy systems for connected communities: A review of recent advances and emerging challenges," Applied Energy, Elsevier, vol. 282(PA).
    14. Dukovska, Irena & Slootweg, J.G. (Han) & Paterakis, Nikolaos G., 2023. "Introducing user preferences for peer-to-peer electricity trading through stochastic multi-objective optimization," Applied Energy, Elsevier, vol. 338(C).
    15. Matija Kostelac & Lin Herenčić & Tomislav Capuder, 2022. "Planning and Operational Aspects of Individual and Clustered Multi-Energy Microgrid Options," Energies, MDPI, vol. 15(4), pages 1-17, February.
    16. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K., 2021. "Cooperative negawatt P2P energy trading for low-voltage distribution networks," Applied Energy, Elsevier, vol. 299(C).
    17. Duarte Kazacos Winter & Rahul Khatri & Michael Schmidt, 2021. "Decentralized Prosumer-Centric P2P Electricity Market Coordination with Grid Security," Energies, MDPI, vol. 14(15), pages 1-17, August.
    18. Wang, Juan & Zheng, Junjun & Yu, Liukai & Goh, Mark & Tang, Yunying & Huang, Yongchao, 2023. "Distributed Reputation-Distance iterative auction system for Peer-To-Peer power trading," Applied Energy, Elsevier, vol. 345(C).
    19. Kılkış, Şiir & Ulpiani, Giulia & Vetters, Nadja, 2024. "Visions for climate neutrality and opportunities for co-learning in European cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    20. Ma, Li & Wang, Lingfeng & Liu, Zhaoxi, 2021. "Multi-level trading community formation and hybrid trading network construction in local energy market," Applied Energy, Elsevier, vol. 285(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2364-:d:1085015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.