IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53303-4.html
   My bibliography  Save this article

Deep learning resilience inference for complex networked systems

Author

Listed:
  • Chang Liu

    (Tsinghua University
    Tsinghua University)

  • Fengli Xu

    (Tsinghua University
    Tsinghua University)

  • Chen Gao

    (Tsinghua University
    Tsinghua University)

  • Zhaocheng Wang

    (Tsinghua University
    Tsinghua University)

  • Yong Li

    (Tsinghua University
    Tsinghua University)

  • Jianxi Gao

    (Rensselaer Polytechnic Institute
    Rensselaer Polytechnic Institute)

Abstract

Resilience, the ability to maintain fundamental functionality amidst failures and errors, is crucial for complex networked systems. Most analytical approaches rely on predefined equations for node activity dynamics and simplifying assumptions on network topology, limiting their applicability to real-world systems. Here, we propose ResInf, a deep learning framework integrating transformers and graph neural networks to infer resilience directly from observational data. ResInf learns representations of node activity dynamics and network topology without simplifying assumptions, enabling accurate resilience inference and low-dimensional visualization. Experimental results show that ResInf significantly outperforms analytical methods, with an F1-score improvement of up to 41.59% over Gao-Barzel-Barabási framework and 14.32% over spectral dimension reduction. It also generalizes to unseen topologies and dynamics and maintains robust performance despite observational disturbances. Our findings suggest that ResInf addresses an important gap in resilience inference for real-world systems, offering a fresh perspective on incorporating data-driven approaches to complex network modeling.

Suggested Citation

  • Chang Liu & Fengli Xu & Chen Gao & Zhaocheng Wang & Yong Li & Jianxi Gao, 2024. "Deep learning resilience inference for complex networked systems," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53303-4
    DOI: 10.1038/s41467-024-53303-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53303-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53303-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Charles Murphy & Edward Laurence & Antoine Allard, 2021. "Deep learning of contagion dynamics on complex networks," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Jianxi Gao & Baruch Barzel & Albert-László Barabási, 2016. "Erratum: Universal resilience patterns in complex networks," Nature, Nature, vol. 536(7615), pages 238-238, August.
    3. Jianxi Gao & Baruch Barzel & Albert-László Barabási, 2016. "Universal resilience patterns in complex networks," Nature, Nature, vol. 530(7590), pages 307-312, February.
    4. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gangwal, Utkarsh & Singh, Mayank & Pandey, Pradumn Kumar & Kamboj, Deepak & Chatterjee, Samrat & Bhatia, Udit, 2022. "Identifying early-warning indicators of onset of sudden collapse in networked infrastructure systems against sequential disruptions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    2. Aura Reggiani, 2022. "The Architecture of Connectivity: A Key to Network Vulnerability, Complexity and Resilience," Networks and Spatial Economics, Springer, vol. 22(3), pages 415-437, September.
    3. Lv, Changchun & Yuan, Ziwei & Si, Shubin & Duan, Dongli, 2021. "Robustness of scale-free networks with dynamical behavior against multi-node perturbation," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    4. Wu, Chengxing & Duan, Dongli, 2024. "Collapse process prediction of mutualistic dynamical networks with k-core and dimension reduction method," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    5. Didier Wernli & Lucas Böttcher & Flore Vanackere & Yuliya Kaspiarovich & Maria Masood & Nicolas Levrat, 2023. "Understanding and governing global systemic crises in the 21st century: A complexity perspective," Global Policy, London School of Economics and Political Science, vol. 14(2), pages 207-228, May.
    6. Prasan Ratnayake & Sugandima Weragoda & Janaka Wansapura & Dharshana Kasthurirathna & Mahendra Piraveenan, 2021. "Quantifying the Robustness of Complex Networks with Heterogeneous Nodes," Mathematics, MDPI, vol. 9(21), pages 1-20, November.
    7. Fabrizio Lillo & Giorgio Rizzini, 2024. "Modelling shock propagation and resilience in financial temporal networks," Papers 2407.09340, arXiv.org.
    8. Marcus Engsig & Alejandro Tejedor & Yamir Moreno & Efi Foufoula-Georgiou & Chaouki Kasmi, 2024. "DomiRank Centrality reveals structural fragility of complex networks via node dominance," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Lv, Changchun & Yuan, Ziwei & Si, Shubin & Duan, Dongli & Yao, Shirui, 2022. "Cascading failure in networks with dynamical behavior against multi-node removal," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    10. Yingqiu Zhu & Ruiyi Wang & Mingfei Feng & Lei Qin & Ben-Chang Shia & Ming-Chih Chen, 2024. "Supply Chain Analysis Based on Community Detection of Multi-Layer Weighted Networks," Mathematics, MDPI, vol. 12(22), pages 1-21, November.
    11. Hao, Yucheng & Jia, Limin & Zio, Enrico & Wang, Yanhui & Small, Michael & Li, Man, 2023. "Improving resilience of high-speed train by optimizing repair strategies," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    12. Liang, Zhenglin & Li, Yan-Fu, 2023. "Holistic Resilience and Reliability Measures for Cellular Telecommunication Networks," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    13. Dongli, Duan & Chengxing, Wu & Yuchen, Zhai & Changchun, Lv & Ning, Wang, 2022. "Coexistence mechanism of alien species and local ecosystem based on network dimensionality reduction method," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    14. Tu, Chengyi & Fan, Ying & Shi, Tianyu, 2024. "Dimensionality reduction of networked systems with separable coupling-dynamics: Theory and applications," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    15. Duan, Wenqi & Madasi, Joseph David & Khurshid, Adnan & Ma, Dan, 2022. "Industrial structure conditions economic resilience," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    16. Sebestyén, Tamás & Szabó, Norbert & Braun, Emese & Bedő, Zsolt, 2024. "Lokális reziliencia számítása térbeli általános egyensúlyi modell felhasználásával [Measuring local resilience with a spatial computable general equilibrium model]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(11), pages 1222-1253.
    17. Hou, Gege & Bai, Lei & Si, Shubin, 2023. "Ecosystem resilience and stability analysis against alien species invasion patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 619(C).
    18. Liu, Siyuan & Zhang, Chunyan & Li, Kun & Zhang, Jianlei, 2022. "Exploring the inducement for social dilemma and cooperation promotion mechanisms in structured populations," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    19. Xu, Peng-Cheng & Lu, Qing-Chang & Xie, Chi & Cheong, Taesu, 2024. "Modeling the resilience of interdependent networks: The role of function dependency in metro and bus systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    20. Li, Angsheng & Zhang, Xiaohui & Pan, Yicheng, 2017. "Resistance maximization principle for defending networks against virus attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 211-223.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53303-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.