IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53287-1.html
   My bibliography  Save this article

Enhanced energy storage performance in NBT-based MLCCs via cooperative optimization of polarization and grain alignment

Author

Listed:
  • Yang Li

    (Xi’an Jiaotong University)

  • Ningbo Fan

    (Soochow University)

  • Jie Wu

    (Xi’an Jiaotong University)

  • Bin Xu

    (Soochow University)

  • Xuexin Li

    (Xi’an Jiaotong University)

  • Xuechen Liu

    (Xi’an Jiaotong University)

  • Yizhou Xiao

    (Xi’an Jiaotong University)

  • Dingwei Hou

    (Xi’an Jiaotong University)

  • Xinya Feng

    (Xi’an Jiaotong University)

  • Jinjing Zhang

    (Xi’an Jiaotong University)

  • Shujun Zhang

    (University of Wollongong)

  • Jinglei Li

    (Xi’an Jiaotong University)

  • Fei Li

    (Xi’an Jiaotong University)

Abstract

Dielectric ceramics possess a unique competitive advantage in electronic systems due to their high-power density and excellent reliability. Na1/2Bi1/2TiO3-based ceramics, one type of extensively studied energy storage dielectric, however, often experience A-site element volatilization and Ti4+ reduction during high-temperature sintering. These issues may result in increased energy loss, reduced polarization and low dielectric breakdown electric field, ultimately making it challenging to achieve both high energy storage density and efficiency. To address these issues, we introduce a synergistic optimization strategy that combine polarization engineering and grain alignment engineering. First principles calculations and experimental analyses show that the doping of Mn2+ can suppress the reduction of Ti4+ in Na1/2Bi1/2TiO3-based ceramics and enhance ion off-centering displacements, thereby reducing energy loss and improving polarization. In addition, we prepared multilayer ceramic capacitors with grains oriented along the direction using the template grain growth method. This approach effectively reduces electric-field-induced strain by 37% and markedly enhances breakdown electric field by 42% when compared with nontextured counterpart. As a result of this comprehensive strategy, -textured Na1/2Bi1/2TiO3-based multilayer ceramic capacitors achieve an ultra-high energy density of 15.7 J·cm−3 and an excellent efficiency beyond 95% at 850 kV·cm−1, exhibiting a superior overall energy storage performance.

Suggested Citation

  • Yang Li & Ningbo Fan & Jie Wu & Bin Xu & Xuexin Li & Xuechen Liu & Yizhou Xiao & Dingwei Hou & Xinya Feng & Jinjing Zhang & Shujun Zhang & Jinglei Li & Fei Li, 2024. "Enhanced energy storage performance in NBT-based MLCCs via cooperative optimization of polarization and grain alignment," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53287-1
    DOI: 10.1038/s41467-024-53287-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53287-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53287-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Weichen Zhao & Diming Xu & Da Li & Max Avdeev & Hongmei Jing & Mengkang Xu & Yan Guo & Dier Shi & Tao Zhou & Wenfeng Liu & Dong Wang & Di Zhou, 2023. "Broad-high operating temperature range and enhanced energy storage performances in lead-free ferroelectrics," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haonan Peng & Tiantian Wu & Zhen Liu & Zhengqian Fu & Dong Wang & Yanshuang Hao & Fangfang Xu & Genshui Wang & Junhao Chu, 2024. "High-entropy relaxor ferroelectric ceramics for ultrahigh energy storage," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Jianhong Duan & Kun Wei & Qianbiao Du & Linzhao Ma & Huifen Yu & He Qi & Yangchun Tan & Gaokuo Zhong & Hao Li, 2024. "High-entropy superparaelectrics with locally diverse ferroic distortion for high-capacitive energy storage," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53287-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.