IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53284-4.html
   My bibliography  Save this article

Parallel genome-scale CRISPR-Cas9 screens uncouple human pluripotent stem cell identity versus fitness

Author

Listed:
  • Bess P. Rosen

    (Sloan Kettering Institute
    Weill Cornell Medicine)

  • Qing V. Li

    (Sloan Kettering Institute
    Memorial Sloan Kettering Cancer Center
    Tessera Therapeutics)

  • Hyein S. Cho

    (Sloan Kettering Institute)

  • Dingyu Liu

    (Sloan Kettering Institute
    Memorial Sloan Kettering Cancer Center)

  • Dapeng Yang

    (Sloan Kettering Institute)

  • Sarah Graff

    (Albert Einstein College of Medicine)

  • Jielin Yan

    (Sloan Kettering Institute
    Memorial Sloan Kettering Cancer Center)

  • Renhe Luo

    (Sloan Kettering Institute
    Memorial Sloan Kettering Cancer Center)

  • Nipun Verma

    (Sloan Kettering Institute
    Yale School of Medicine)

  • Jeyaram R. Damodaran

    (Sloan Kettering Institute)

  • Hanuman T. Kale

    (Sloan Kettering Institute)

  • Samuel J. Kaplan

    (Sloan Kettering Institute
    Weill Cornell Medicine)

  • Michael A. Beer

    (Johns Hopkins University)

  • Simone Sidoli

    (Albert Einstein College of Medicine)

  • Danwei Huangfu

    (Sloan Kettering Institute)

Abstract

Pluripotent stem cells have remarkable self-renewal capacity: the ability to proliferate indefinitely while maintaining the pluripotent identity essential for their ability to differentiate into almost any cell type in the body. To investigate the interplay between these two aspects of self-renewal, we perform four parallel genome-scale CRISPR-Cas9 loss-of-function screens interrogating stem cell fitness in hPSCs and the dissolution of primed pluripotent identity during early differentiation. These screens distinguish genes with distinct roles in pluripotency regulation, including mitochondrial and metabolism regulators crucial for stem cell fitness, and chromatin regulators that control pluripotent identity during early differentiation. We further identify a core set of genes controlling both stem cell fitness and pluripotent identity, including a network of chromatin factors. Here, unbiased screening and comparative analyses disentangle two interconnected aspects of pluripotency, provide a valuable resource for exploring pluripotent stem cell identity versus cell fitness, and offer a framework for categorizing gene function.

Suggested Citation

  • Bess P. Rosen & Qing V. Li & Hyein S. Cho & Dingyu Liu & Dapeng Yang & Sarah Graff & Jielin Yan & Renhe Luo & Nipun Verma & Jeyaram R. Damodaran & Hanuman T. Kale & Samuel J. Kaplan & Michael A. Beer , 2024. "Parallel genome-scale CRISPR-Cas9 screens uncouple human pluripotent stem cell identity versus fitness," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53284-4
    DOI: 10.1038/s41467-024-53284-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53284-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53284-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Na-Yu Chia & Yun-Shen Chan & Bo Feng & Xinyi Lu & Yuriy L. Orlov & Dimitri Moreau & Pankaj Kumar & Lin Yang & Jianming Jiang & Mei-Sheng Lau & Mikael Huss & Boon-Seng Soh & Petra Kraus & Pin Li & Thom, 2010. "A genome-wide RNAi screen reveals determinants of human embryonic stem cell identity," Nature, Nature, vol. 468(7321), pages 316-320, November.
    2. Jens Keilwagen & Ivo Grosse & Jan Grau, 2014. "Area under Precision-Recall Curves for Weighted and Unweighted Data," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-13, March.
    3. Clare Pacini & Joshua M. Dempster & Isabella Boyle & Emanuel Gonçalves & Hanna Najgebauer & Emre Karakoc & Dieudonne Meer & Andrew Barthorpe & Howard Lightfoot & Patricia Jaaks & James M. McFarland & , 2021. "Integrated cross-study datasets of genetic dependencies in cancer," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    4. Jovylyn Gatchalian & Shivani Malik & Josephine Ho & Dong-Sung Lee & Timothy W. R. Kelso & Maxim N. Shokhirev & Jesse R. Dixon & Diana C. Hargreaves, 2018. "A non-canonical BRD9-containing BAF chromatin remodeling complex regulates naive pluripotency in mouse embryonic stem cells," Nature Communications, Nature, vol. 9(1), pages 1-16, December.
    5. Xin Huang & Kyoung-mi Park & Paul Gontarz & Bo Zhang & Joshua Pan & Zachary McKenzie & Laura A. Fischer & Chen Dong & Sabine Dietmann & Xiaoyun Xing & Pavel V. Shliaha & Jihong Yang & Dan Li & Junjun , 2021. "OCT4 cooperates with distinct ATP-dependent chromatin remodelers in naïve and primed pluripotent states in human," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sean A. Misek & Aaron Fultineer & Jeremie Kalfon & Javad Noorbakhsh & Isabella Boyle & Priyanka Roy & Joshua Dempster & Lia Petronio & Katherine Huang & Alham Saadat & Thomas Green & Adam Brown & John, 2024. "Germline variation contributes to false negatives in CRISPR-based experiments with varying burden across ancestries," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Rani Pallavi & Elena Gatti & Tiphanie Durfort & Massimo Stendardo & Roberto Ravasio & Tommaso Leonardi & Paolo Falvo & Bruno Achutti Duso & Simona Punzi & Aobuli Xieraili & Andrea Polazzi & Doriana Ve, 2024. "Caloric restriction leads to druggable LSD1-dependent cancer stem cells expansion," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    3. Yawen Lei & Yaoguang Yu & Wei Fu & Tao Zhu & Caihong Wu & Zhihao Zhang & Zewang Yu & Xin Song & Jianqu Xu & Zhenwei Liang & Peitao Lü & Chenlong Li, 2024. "BCL7A and BCL7B potentiate SWI/SNF-complex-mediated chromatin accessibility to regulate gene expression and vegetative phase transition in plants," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    4. Kajal Lahiri & Cheng Yang, 2023. "ROC and PRC Approaches to Evaluate Recession Forecasts," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 19(2), pages 119-148, September.
    5. Quentin I. B. Lemaître & Natascha Bartsch & Ian U. Kouzel & Henriette Busengdal & Gemma Sian Richards & Patrick R. H. Steinmetz & Fabian Rentzsch, 2023. "NvPrdm14d-expressing neural progenitor cells contribute to non-ectodermal neurogenesis in Nematostella vectensis," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    6. Wei Hu & Yangjun Wu & Qili Shi & Jingni Wu & Deping Kong & Xiaohua Wu & Xianghuo He & Teng Liu & Shengli Li, 2022. "Systematic characterization of cancer transcriptome at transcript resolution," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    7. Luca Pagliaroli & Patrizia Porazzi & Alyxandra T. Curtis & Chiara Scopa & Harald M. M. Mikkers & Christian Freund & Lucia Daxinger & Sandra Deliard & Sarah A. Welsh & Sarah Offley & Connor A. Ott & Br, 2021. "Inability to switch from ARID1A-BAF to ARID1B-BAF impairs exit from pluripotency and commitment towards neural crest formation in ARID1B-related neurodevelopmental disorders," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    8. Xiao Chen & Yinglu Li & Fang Zhu & Xinjing Xu & Brian Estrella & Manuel A. Pazos & John T. McGuire & Dimitris Karagiannis & Varun Sahu & Mustafo Mustafokulov & Claudio Scuoppo & Francisco J. Sánchez-R, 2023. "Context-defined cancer co-dependency mapping identifies a functional interplay between PRC2 and MLL-MEN1 complex in lymphoma," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    9. Stan Hatko, 2017. "The Bank of Canada 2015 Retailer Survey on the Cost of Payment Methods: Nonresponse," Technical Reports 107, Bank of Canada.
    10. Gisele Nishiguchi & Lauren G. Mascibroda & Sarah M. Young & Elizabeth A. Caine & Sherif Abdelhamed & Jeffrey J. Kooijman & Darcie J. Miller & Sourav Das & Kevin McGowan & Anand Mayasundari & Zhe Shi &, 2024. "Selective CK1α degraders exert antiproliferative activity against a broad range of human cancer cell lines," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    11. Ruitong Li & Olaf Klingbeil & Davide Monducci & Michael J. Young & Diego J. Rodriguez & Zaid Bayyat & Joshua M. Dempster & Devishi Kesar & Xiaoping Yang & Mahdi Zamanighomi & Christopher R. Vakoc & Ta, 2022. "Comparative optimization of combinatorial CRISPR screens," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. George Rosenberger & Wenxue Li & Mikko Turunen & Jing He & Prem S. Subramaniam & Sergey Pampou & Aaron T. Griffin & Charles Karan & Patrick Kerwin & Diana Murray & Barry Honig & Yansheng Liu & Andrea , 2024. "Network-based elucidation of colon cancer drug resistance mechanisms by phosphoproteomic time-series analysis," Nature Communications, Nature, vol. 15(1), pages 1-27, December.
    13. Dhurjhoti Saha & Solomon Hailu & Arjan Hada & Junwoo Lee & Jie Luo & Jeff A. Ranish & Yuan-chi Lin & Kyle Feola & Jim Persinger & Abhinav Jain & Bin Liu & Yue Lu & Payel Sen & Blaine Bartholomew, 2023. "The AT-hook is an evolutionarily conserved auto-regulatory domain of SWI/SNF required for cell lineage priming," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    14. Jiahui Du & Yili Liu & Jinrui Sun & Enhui Yao & Jingyi Xu & Xiaolin Wu & Ling Xu & Mingliang Zhou & Guangzheng Yang & Xinquan Jiang, 2024. "ARID1A safeguards the canalization of the cell fate decision during osteoclastogenesis," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    15. Miguel M. Álvarez & Josep Biayna & Fran Supek, 2022. "TP53-dependent toxicity of CRISPR/Cas9 cuts is differential across genomic loci and can confound genetic screening," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    16. Giambattista Albora & Matteo Straccamore & Andrea Zaccaria, 2024. "Machine learning-based similarity measure to forecast M&A from patent data," Papers 2404.07179, arXiv.org.
    17. T. Villmann & M. Kaden & W. Hermann & M. Biehl, 2018. "Learning vector quantization classifiers for ROC-optimization," Computational Statistics, Springer, vol. 33(3), pages 1173-1194, September.
    18. Muran Xiao & Shinji Kondo & Masaki Nomura & Shinichiro Kato & Koutarou Nishimura & Weijia Zang & Yifan Zhang & Tomohiro Akashi & Aaron Viny & Tsukasa Shigehiro & Tomokatsu Ikawa & Hiromi Yamazaki & Mi, 2023. "BRD9 determines the cell fate of hematopoietic stem cells by regulating chromatin state," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    19. Jiahui Du & Yili Liu & Xiaolin Wu & Jinrui Sun & Junfeng Shi & Hongming Zhang & Ao Zheng & Mingliang Zhou & Xinquan Jiang, 2023. "BRD9-mediated chromatin remodeling suppresses osteoclastogenesis through negative feedback mechanism," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    20. Tanay Thakar & Ashna Dhoonmoon & Joshua Straka & Emily M. Schleicher & Claudia M. Nicolae & George-Lucian Moldovan, 2022. "Lagging strand gap suppression connects BRCA-mediated fork protection to nucleosome assembly through PCNA-dependent CAF-1 recycling," Nature Communications, Nature, vol. 13(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53284-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.