IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53042-6.html
   My bibliography  Save this article

Ultra-permeable silk-based polymeric membranes for vacuum-driven nanofiltration

Author

Listed:
  • Bowen Gan

    (The University of Hong Kong, Pokfulam)

  • Lu Elfa Peng

    (The University of Hong Kong, Pokfulam)

  • Wenyu Liu

    (The University of Hong Kong, Pokfulam)

  • Lingyue Zhang

    (The University of Hong Kong, Pokfulam)

  • Li Ares Wang

    (The University of Hong Kong, Pokfulam)

  • Li Long

    (The University of Hong Kong, Pokfulam)

  • Hao Guo

    (Tsinghua University)

  • Xiaoxiao Song

    (Zhejiang University of Technology)

  • Zhe Yang

    (The University of Hong Kong, Pokfulam
    The University of Queensland)

  • Chuyang Y. Tang

    (The University of Hong Kong, Pokfulam)

Abstract

Nanofiltration (NF) membranes are commonly supplied in spiral-wound modules, resulting in numerous drawbacks for practical applications (e.g., high operating pressure/pressure drop/costs). Vacuum-driven NF could be a promising and low-cost alternative by utilizing simple components and operating under an ultra-low vacuum pressure (

Suggested Citation

  • Bowen Gan & Lu Elfa Peng & Wenyu Liu & Lingyue Zhang & Li Ares Wang & Li Long & Hao Guo & Xiaoxiao Song & Zhe Yang & Chuyang Y. Tang, 2024. "Ultra-permeable silk-based polymeric membranes for vacuum-driven nanofiltration," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53042-6
    DOI: 10.1038/s41467-024-53042-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53042-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53042-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yu-Ren Xue & Chang Liu & Zhao-Yu Ma & Cheng-Ye Zhu & Jian Wu & Hong-Qing Liang & Hao-Cheng Yang & Chao Zhang & Zhi-Kang Xu, 2024. "Harmonic amide bond density as a game-changer for deciphering the crosslinking puzzle of polyamide," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Zhiwei Jiang & Ruijiao Dong & Austin M. Evans & Niklas Biere & Mahmood A. Ebrahim & Siyao Li & Dario Anselmetti & William R. Dichtel & Andrew G. Livingston, 2022. "Aligned macrocycle pores in ultrathin films for accurate molecular sieving," Nature, Nature, vol. 609(7925), pages 58-64, September.
    3. Weiwen Xin & Zhen Zhang & Xiaodong Huang & Yuhao Hu & Teng Zhou & Congcong Zhu & Xiang-Yu Kong & Lei Jiang & Liping Wen, 2019. "High-performance silk-based hybrid membranes employed for osmotic energy conversion," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    4. Shuangqiao Han & Junyong Zhu & Adam A. Uliana & Dongyang Li & Yatao Zhang & Lin Zhang & Yong Wang & Tao He & Menachem Elimelech, 2022. "Microporous organic nanotube assisted design of high performance nanofiltration membranes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Changwei Zhao & Yanjun Zhang & Yuewen Jia & Bojun Li & Wenjing Tang & Chuning Shang & Rui Mo & Pei Li & Shaomin Liu & Sui Zhang, 2023. "Polyamide membranes with nanoscale ordered structures for fast permeation and highly selective ion-ion separation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shenxiang Zhang & Xian Wei & Xue Cao & Meiwen Peng & Min Wang & Lin Jiang & Jian Jin, 2024. "Solar-driven membrane separation for direct lithium extraction from artificial salt-lake brine," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Jiadong Tang & Yun Wang & Hongyang Yang & Qianqian Zhang & Ce Wang & Leyuan Li & Zilong Zheng & Yuhong Jin & Hao Wang & Yifan Gu & Tieyong Zuo, 2024. "All-natural 2D nanofluidics as highly-efficient osmotic energy generators," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Bingbing Yuan & Yuhang Zhang & Pengfei Qi & Dongxiao Yang & Ping Hu & Siheng Zhao & Kaili Zhang & Xiaozhuan Zhang & Meng You & Jiabao Cui & Juhui Jiang & Xiangdong Lou & Q. Jason Niu, 2024. "Self-assembled dendrimer polyamide nanofilms with enhanced effective pore area for ion separation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Jihoon Choi & Keonwoo Choi & YongSung Kwon & Daehun Kim & Youngmin Yoo & Sung Gap Im & Dong-Yeun Koh, 2024. "Ultrathin organosiloxane membrane for precision organic solvent nanofiltration," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Banan Alhazmi & Gergo Ignacz & Maria Vincenzo & Mohamed Nejib Hedhili & Gyorgy Szekely & Suzana P. Nunes, 2024. "Ultraselective Macrocycle Membranes for Pharmaceutical Ingredients Separation in Organic Solvents," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Ren, Qinlong & Zhu, Huangyi & Chen, Kelei & Zhang, J.F. & Qu, Z.G., 2022. "Similarity principle based multi-physical parameter unification and comparison in salinity-gradient osmotic energy conversion," Applied Energy, Elsevier, vol. 307(C).
    7. Kecheng Guan & Yanan Guo & Zhan Li & Yuandong Jia & Qin Shen & Keizo Nakagawa & Tomohisa Yoshioka & Gongping Liu & Wanqin Jin & Hideto Matsuyama, 2023. "Deformation constraints of graphene oxide nanochannels under reverse osmosis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Chengcheng Zhu & Li Xu & Yazi Liu & Jiang Liu & Jin Wang & Hanjun Sun & Ya-Qian Lan & Chen Wang, 2024. "Polyoxometalate-based plasmonic electron sponge membrane for nanofluidic osmotic energy conversion," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Mengtao Tian & Yi Liu & Shaoze Zhang & Can Yu & Kostya (Ken) Ostrikov & Zhenghua Zhang, 2024. "Overcoming the permeability-selectivity challenge in water purification using two-dimensional cobalt-functionalized vermiculite membrane," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Zhang, X.F. & Zhang, X. & Qu, Z.G. & Pu, J.Q. & Wang, Q., 2022. "Thermal-enhanced nanofluidic osmotic energy conversion with the interfacial photothermal method," Applied Energy, Elsevier, vol. 326(C).
    11. Jiao, Yanmei & Yang, Chun & Zhang, Wenyao & Wang, Qiuwang & Zhao, Cunlu, 2024. "A review on direct osmotic power generation: Mechanism and membranes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    12. Huawen Peng & Kaicheng Yu & Xufei Liu & Jiapeng Li & Xiangguo Hu & Qiang Zhao, 2023. "Quaternization-spiro design of chlorine-resistant and high-permeance lithium separation membranes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Rezakazemi, Mashallah & Arabi Shamsabadi, Ahmad & Lin, Haiqing & Luis, Patricia & Ramakrishna, Seeram & Aminabhavi, Tejraj M., 2021. "Sustainable MXenes-based membranes for highly energy-efficient separations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    14. Di Wei & Feiyao Yang & Zhuoheng Jiang & Zhonglin Wang, 2022. "Flexible iontronics based on 2D nanofluidic material," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53042-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.