IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52715-6.html
   My bibliography  Save this article

The role of water mobility on water-responsive actuation of silk

Author

Listed:
  • Darjan Podbevšek

    (Advanced Science Research Center (ASRC) at the Graduate Center, The City University of New York
    Department of Chemical Engineering, The City College of New York)

  • Yeojin Jung

    (Advanced Science Research Center (ASRC) at the Graduate Center, The City University of New York
    Department of Chemical Engineering, The City College of New York)

  • Maheen K. Khan

    (Advanced Science Research Center (ASRC) at the Graduate Center, The City University of New York
    Department of Chemical Engineering, The City College of New York)

  • Honghui Yu

    (Department of Mechanical Engineering, The City College of New York)

  • Raymond S. Tu

    (Advanced Science Research Center (ASRC) at the Graduate Center, The City University of New York
    Department of Chemical Engineering, The City College of New York)

  • Xi Chen

    (Advanced Science Research Center (ASRC) at the Graduate Center, The City University of New York
    Department of Chemical Engineering, The City College of New York
    PhD Programs in Chemistry and Physics, The Graduate Center of the City University of New York)

Abstract

Biological water-responsive materials that deform with changes in relative humidity have recently demonstrated record-high actuation energy densities, showing promise as high-performance actuators for various engineering applications. However, there is a lack of theories capable of explaining or predicting the stress generated during water-responsiveness. Here, we show that the nanoscale confinement of water dominates the macroscopic dehydration-induced stress of the regenerated silk fibroin. We modified silk fibroin’s secondary structure, which leads to various distributions of bulk-like mobile and tightly bound water populations. Interestingly, despite these structure variations, all silk samples start to exert force when the bound-to-mobile (B/M) ratio of confined water reaches the same level. This critical B/M water ratio suggests a common threshold above which the chemical potential of water instigates the actuation. Our findings serve as guidelines for predicting and engineering silk’s WR behavior and suggest the potential of describing the WR behavior of biopolymers through confined water.

Suggested Citation

  • Darjan Podbevšek & Yeojin Jung & Maheen K. Khan & Honghui Yu & Raymond S. Tu & Xi Chen, 2024. "The role of water mobility on water-responsive actuation of silk," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52715-6
    DOI: 10.1038/s41467-024-52715-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52715-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52715-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dongha Shin & Jonggeun Hwang & Wonho Jhe, 2019. "Ice-VII-like molecular structure of ambient water nanomeniscus," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    2. Xi Chen & Davis Goodnight & Zhenghan Gao & Ahmet H. Cavusoglu & Nina Sabharwal & Michael DeLay & Adam Driks & Ozgur Sahin, 2015. "Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    3. Mingyang Chen & Benoit Coasne & Robert Guyer & Dominique Derome & Jan Carmeliet, 2018. "Role of hydrogen bonding in hysteresis observed in sorption-induced swelling of soft nanoporous polymers," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    4. Danli Luo & Aditi Maheshwari & Andreea Danielescu & Jiaji Li & Yue Yang & Ye Tao & Lingyun Sun & Dinesh K. Patel & Guanyun Wang & Shu Yang & Teng Zhang & Lining Yao, 2023. "Autonomous self-burying seed carriers for aerial seeding," Nature, Nature, vol. 614(7948), pages 463-470, February.
    5. Ahmet-Hamdi Cavusoglu & Xi Chen & Pierre Gentine & Ozgur Sahin, 2017. "Potential for natural evaporation as a reliable renewable energy resource," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ariel Ma & Jian Yu & William Uspal, 2021. "Generating Electricity from Natural Evaporation Using PVDF Thin Films Incorporating Nanocomposite Materials," Energies, MDPI, vol. 14(3), pages 1-14, January.
    2. Emily Birch & Ben Bridgens & Meng Zhang & Martyn Dade-Robertson, 2021. "Bacterial Spore-Based Hygromorphs: A Novel Active Material with Potential for Architectural Applications," Sustainability, MDPI, vol. 13(7), pages 1-19, April.
    3. Patire, Anthony D. PhD & Dion, Francois PhD & Bayen, Alexandre M. PhD, 2024. "Reduce Emissions and Improve Traffic Flow Through Collaborative Autonomy," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt726964qq, Institute of Transportation Studies, UC Berkeley.
    4. Fan, Zeng & Zhang, Yaoyun & Pan, Lujun & Ouyang, Jianyong & Zhang, Qian, 2021. "Recent developments in flexible thermoelectrics: From materials to devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    5. Artem Holstov & Graham Farmer & Ben Bridgens, 2017. "Sustainable Materialisation of Responsive Architecture," Sustainability, MDPI, vol. 9(3), pages 1-20, March.
    6. Bo Lin & Jian Jiang & Xiao Cheng Zeng & Lei Li, 2023. "Temperature-pressure phase diagram of confined monolayer water/ice at first-principles accuracy with a machine-learning force field," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Yi Wang & Weinan Zhao & Yebin Lee & Yuning Li & Zuankai Wang & Kam Chiu Tam, 2024. "Thermo-adaptive interfacial solar evaporation enhanced by dynamic water gating," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Fatima Mustafa & Saadia Zia & Dr. Umbreen Khizar, 2021. "Impact of Environmental Concerns on Environmental Attitudes among University Employees," iRASD Journal of Economics, International Research Alliance for Sustainable Development (iRASD), vol. 3(3), pages 251-260, December.
    9. Fang, Ranran & Luo, Chongfu & Pan, Zhonglin & Li, Junchang & Xu, Fulei & Zheng, Jiangen & Mao, Xuefeng & Wang, Xiaofa & Li, Rui & Wei, Yongbin & Chen, Yijing & Vorobyev, Anatoliy Y., 2024. "Efficient harvesting of renewable evaporative energy from atmospheric air through hierarchical nano/microscale shaping of air-water interface," Applied Energy, Elsevier, vol. 358(C).
    10. Qiang, Ziyi & Cui, Peilin & Tian, Chenyun & Liu, Runkeng & Shen, Hong & Liu, Zhenyu, 2023. "Enhancing power generation for carbon black film device based on optimization of liquid capillary flow," Applied Energy, Elsevier, vol. 351(C).
    11. Gong, Biyao & Yang, Huachao & Wu, Shenghao & Tian, Yikuan & Yan, Jianhua & Cen, Kefa & Bo, Zheng & Ostrikov, Kostya (Ken), 2021. "Phase change material enhanced sustained and energy-efficient solar-thermal water desalination," Applied Energy, Elsevier, vol. 301(C).
    12. Xiaomeng Liu & Toshiyuki Ueki & Hongyan Gao & Trevor L. Woodard & Kelly P. Nevin & Tianda Fu & Shuai Fu & Lu Sun & Derek R. Lovley & Jun Yao, 2022. "Microbial biofilms for electricity generation from water evaporation and power to wearables," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52715-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.