IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms8346.html
   My bibliography  Save this article

Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators

Author

Listed:
  • Xi Chen

    (Columbia University)

  • Davis Goodnight

    (Columbia University)

  • Zhenghan Gao

    (Columbia University)

  • Ahmet H. Cavusoglu

    (Columbia University)

  • Nina Sabharwal

    (Columbia University)

  • Michael DeLay

    (Columbia University)

  • Adam Driks

    (Loyola University Chicago)

  • Ozgur Sahin

    (Columbia University
    Columbia University)

Abstract

Evaporation is a ubiquitous phenomenon in the natural environment and a dominant form of energy transfer in the Earth’s climate. Engineered systems rarely, if ever, use evaporation as a source of energy, despite myriad examples of such adaptations in the biological world. Here, we report evaporation-driven engines that can power common tasks like locomotion and electricity generation. These engines start and run autonomously when placed at air–water interfaces. They generate rotary and piston-like linear motion using specially designed, biologically based artificial muscles responsive to moisture fluctuations. Using these engines, we demonstrate an electricity generator that rests on water while harvesting its evaporation to power a light source, and a miniature car (weighing 0.1 kg) that moves forward as the water in the car evaporates. Evaporation-driven engines may find applications in powering robotic systems, sensors, devices and machinery that function in the natural environment.

Suggested Citation

  • Xi Chen & Davis Goodnight & Zhenghan Gao & Ahmet H. Cavusoglu & Nina Sabharwal & Michael DeLay & Adam Driks & Ozgur Sahin, 2015. "Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8346
    DOI: 10.1038/ncomms8346
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms8346
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms8346?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ariel Ma & Jian Yu & William Uspal, 2021. "Generating Electricity from Natural Evaporation Using PVDF Thin Films Incorporating Nanocomposite Materials," Energies, MDPI, vol. 14(3), pages 1-14, January.
    2. Darjan Podbevšek & Yeojin Jung & Maheen K. Khan & Honghui Yu & Raymond S. Tu & Xi Chen, 2024. "The role of water mobility on water-responsive actuation of silk," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Artem Holstov & Graham Farmer & Ben Bridgens, 2017. "Sustainable Materialisation of Responsive Architecture," Sustainability, MDPI, vol. 9(3), pages 1-20, March.
    4. Emily Birch & Ben Bridgens & Meng Zhang & Martyn Dade-Robertson, 2021. "Bacterial Spore-Based Hygromorphs: A Novel Active Material with Potential for Architectural Applications," Sustainability, MDPI, vol. 13(7), pages 1-19, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8346. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.