IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-08292-0.html
   My bibliography  Save this article

Ice-VII-like molecular structure of ambient water nanomeniscus

Author

Listed:
  • Dongha Shin

    (Seoul National University)

  • Jonggeun Hwang

    (Seoul National University)

  • Wonho Jhe

    (Seoul National University)

Abstract

Structural transformations originating from diverse rearrangements of the hydrogen bonding in water create various phases. Although most phases have been well investigated down to the molecular level, the molecular structure of the nanomeniscus, a ubiquitous form of nanoscale water in nature, still remains unexplored. Here, we demonstrate that the water nanomeniscus exhibits the stable, ice-VII-like molecular structure in ambient condition. Surface-enhanced Raman spectroscopy on trace amounts of water, confined in inter-nanoparticle gaps, shows a narrowed tetrahedral peak at 3340 cm-1 in the OH-stretching band as well as a lattice-vibrational mode at 230 cm-1. In particular, the ice-VII-like characteristics are evidenced by the spectral independence with respect to temperature variations and differing surface types including the material, size and shape of nanoparticles. Our results provide un unambiguous identification of the molecular structure of nanoconfined water, which is useful for understanding the molecular aspects of water in various nanoscale, including biological, environments.

Suggested Citation

  • Dongha Shin & Jonggeun Hwang & Wonho Jhe, 2019. "Ice-VII-like molecular structure of ambient water nanomeniscus," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08292-0
    DOI: 10.1038/s41467-019-08292-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-08292-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-08292-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bo Lin & Jian Jiang & Xiao Cheng Zeng & Lei Li, 2023. "Temperature-pressure phase diagram of confined monolayer water/ice at first-principles accuracy with a machine-learning force field," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Yi Wang & Weinan Zhao & Yebin Lee & Yuning Li & Zuankai Wang & Kam Chiu Tam, 2024. "Thermo-adaptive interfacial solar evaporation enhanced by dynamic water gating," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Darjan Podbevšek & Yeojin Jung & Maheen K. Khan & Honghui Yu & Raymond S. Tu & Xi Chen, 2024. "The role of water mobility on water-responsive actuation of silk," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08292-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.