IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52559-0.html
   My bibliography  Save this article

Causal involvement of dorsomedial prefrontal cortex in learning the predictability of observable actions

Author

Listed:
  • Pyungwon Kang

    (University of Zurich)

  • Marius Moisa

    (University of Zurich)

  • Björn Lindström

    (Division for Psychology, Karolinska Institute)

  • Alexander Soutschek

    (Department for Psychology)

  • Christian C. Ruff

    (University of Zurich)

  • Philippe N. Tobler

    (University of Zurich
    ETH Zurich and University of Zurich)

Abstract

Social learning is well established across species. While recent neuroimaging studies show that dorsomedial prefrontal cortex (DMPFC/preSMA) activation correlates with observational learning signals, the precise computations that are implemented by DMPFC/preSMA have remained unclear. To identify whether DMPFC/preSMA supports learning from observed outcomes or observed actions, or possibly encodes even a higher order factor (such as the reliability of the demonstrator), we downregulate DMPFC/preSMA excitability with continuous theta burst stimulation (cTBS) and assess different forms of observational learning. Relative to a vertex-cTBS control condition, DMPFC/preSMA downregulation decreases performance during action-based learning but has no effect on outcome-based learning. Computational modeling reveals that DMPFC/preSMA cTBS disrupts learning the predictability, a proxy of reliability, of the demonstrator and modulates the rate of learning from observed actions. Thus, our results suggest that the DMPFC is causally involved in observational action learning, mainly by adjusting the speed of learning about the predictability of the demonstrator.

Suggested Citation

  • Pyungwon Kang & Marius Moisa & Björn Lindström & Alexander Soutschek & Christian C. Ruff & Philippe N. Tobler, 2024. "Causal involvement of dorsomedial prefrontal cortex in learning the predictability of observable actions," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52559-0
    DOI: 10.1038/s41467-024-52559-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52559-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52559-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Anis Najar & Emmanuelle Bonnet & Bahador Bahrami & Stefano Palminteri, 2020. "The actions of others act as a pseudo-reward to drive imitation in the context of social reinforcement learning," PLOS Biology, Public Library of Science, vol. 18(12), pages 1-25, December.
    2. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    3. Marco K. Wittmann & Nils Kolling & Rei Akaishi & Bolton K. H. Chau & Joshua W. Brown & Natalie Nelissen & Matthew F. S. Rushworth, 2016. "Predictive decision making driven by multiple time-linked reward representations in the anterior cingulate cortex," Nature Communications, Nature, vol. 7(1), pages 1-13, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    2. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
    3. Christina Leuker & Thorsten Pachur & Ralph Hertwig & Timothy J. Pleskac, 2019. "Do people exploit risk–reward structures to simplify information processing in risky choice?," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 5(1), pages 76-94, August.
    4. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    5. Alessandri, Piergiorgio & Mumtaz, Haroon, 2019. "Financial regimes and uncertainty shocks," Journal of Monetary Economics, Elsevier, vol. 101(C), pages 31-46.
    6. Svetlana V. Tishkovskaya & Paul G. Blackwell, 2021. "Bayesian estimation of heterogeneous environments from animal movement data," Environmetrics, John Wiley & Sons, Ltd., vol. 32(6), September.
    7. Leonardo Oliveira Martins & Hirohisa Kishino, 2010. "Distribution of distances between topologies and its effect on detection of phylogenetic recombination," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(1), pages 145-159, February.
    8. Tamal Ghosh & Malay Ghosh & Jerry J. Maples & Xueying Tang, 2022. "Multivariate Global-Local Priors for Small Area Estimation," Stats, MDPI, vol. 5(3), pages 1-16, July.
    9. Eibich, Peter & Ziebarth, Nicolas, 2014. "Examining the Structure of Spatial Health Effects in Germany Using Hierarchical Bayes Models," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 49, pages 305-320.
    10. Wu, Ji & Guo, Mengmeng & Chen, Minghua & Jeon, Bang Nam, 2019. "Market power and risk-taking of banks: Some semiparametric evidence from emerging economies," Emerging Markets Review, Elsevier, vol. 41(C).
    11. repec:jss:jstsof:21:i08 is not listed on IDEAS
    12. Deng, Yaguo, 2016. "Efficiency evaluation of Spanish hotel chains," DES - Working Papers. Statistics and Econometrics. WS 23897, Universidad Carlos III de Madrid. Departamento de Estadística.
    13. Cathy W. S. Chen & Sangyeol Lee, 2017. "Bayesian causality test for integer-valued time series models with applications to climate and crime data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 797-814, August.
    14. Makoto Chikaraishi & Akimasa Fujiwara & Junyi Zhang & Kay Axhausen, 2011. "Identifying variations and co-variations in discrete choice models," Transportation, Springer, vol. 38(6), pages 993-1016, November.
    15. Galatia Cleanthous & Emilio Porcu & Philip White, 2021. "Regularity and approximation of Gaussian random fields evolving temporally over compact two-point homogeneous spaces," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(4), pages 836-860, December.
    16. Baños-Pino, José F. & Boto-García, David & Zapico, Emma, 2021. "Persistence and dynamics in the efficiency of toll motorways: The Spanish case," Efficiency Series Papers 2021/03, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    17. Xing Ju Lee & Christopher C. Drovandi & Anthony N. Pettitt, 2015. "Model choice problems using approximate Bayesian computation with applications to pathogen transmission data sets," Biometrics, The International Biometric Society, vol. 71(1), pages 198-207, March.
    18. Chaix, Basile & Jouven, Xavier & Thomas, Frédérique & Leal, Cinira & Billaudeau, Nathalie & Bean, Kathy & Kestens, Yan & Jëgo, Bertrand & Pannier, Bruno & Danchin, Nicolas, 2011. "Why socially deprived populations have a faster resting heart rate: Impact of behaviour, life course anthropometry, and biology – the RECORD Cohort Study," Social Science & Medicine, Elsevier, vol. 73(10), pages 1543-1550.
    19. Emilio Augusto Coelho-Barros & Jorge Alberto Achcar & Josmar Mazucheli, 2010. "Longitudinal Poisson modeling: an application for CD4 counting in HIV-infected patients," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(5), pages 865-880.
    20. Mayer Alvo & Jingrui Mu, 2023. "COVID-19 Data Analysis Using Bayesian Models and Nonparametric Geostatistical Models," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    21. Ye, Mao & Lu, Zhao-Hua & Li, Yimei & Song, Xinyuan, 2019. "Finite mixture of varying coefficient model: Estimation and component selection," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 452-474.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52559-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.