Plug-and-play protein biosensors using aptamer-regulated in vitro transcription
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-024-51907-4
Download full text from publisher
References listed on IDEAS
- Chun-Ying Lee & Christina McNerney & Kevin Ma & Walter Zhao & Ashley Wang & Sua Myong, 2020. "R-loop induced G-quadruplex in non-template promotes transcription by successive R-loop formation," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
- Jay H. Choi & Abigail H. Laurent & Vincent J. Hilser & Marc Ostermeier, 2015. "Design of protein switches based on an ensemble model of allostery," Nature Communications, Nature, vol. 6(1), pages 1-9, November.
- Nicolò Maganzini & Ian Thompson & Brandon Wilson & Hyongsok Tom Soh, 2022. "Pre-equilibrium biosensors as an approach towards rapid and continuous molecular measurements," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
- Grace E. Vezeau & Lipika R. Gadila & Howard M. Salis, 2023. "Automated design of protein-binding riboswitches for sensing human biomarkers in a cell-free expression system," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
- Alfredo Quijano-Rubio & Hsien-Wei Yeh & Jooyoung Park & Hansol Lee & Robert A. Langan & Scott E. Boyken & Marc J. Lajoie & Longxing Cao & Cameron M. Chow & Marcos C. Miranda & Jimin Wi & Hyo Jeong Hon, 2021. "De novo design of modular and tunable protein biosensors," Nature, Nature, vol. 591(7850), pages 482-487, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xueyan Chen & Qianqian Ding & Chao Bi & Jian Ruan & Shikuan Yang, 2022. "Lossless enrichment of trace analytes in levitating droplets for multiphase and multiplex detection," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
- Yasmine S. Zubi & Kosuke Seki & Ying Li & Andrew C. Hunt & Bingqing Liu & Benoît Roux & Michael C. Jewett & Jared C. Lewis, 2022. "Metal-responsive regulation of enzyme catalysis using genetically encoded chemical switches," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
- Huimeng Wang & Yi Fan & Yaqi Hou & Baiyi Chen & Jinmei Lei & Shijie Yu & Xinyu Chen & Xu Hou, 2022. "Host-guest liquid gating mechanism with specific recognition interface behavior for universal quantitative chemical detection," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
- Chun-Ying Lee & Meera Joshi & Ashley Wang & Sua Myong, 2024. "5′UTR G-quadruplex structure enhances translation in size dependent manner," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
- Erin A. Essington & Grace E. Vezeau & Daniel P. Cetnar & Emily Grandinette & Terrence H. Bell & Howard M. Salis, 2024. "An autonomous microbial sensor enables long-term detection of TNT explosive in natural soil," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Luhao Zhang & Maodong Li & Zhirong Liu, 2018. "A comprehensive ensemble model for comparing the allosteric effect of ordered and disordered proteins," PLOS Computational Biology, Public Library of Science, vol. 14(12), pages 1-22, December.
- William M. Dawson & Kathryn L. Shelley & Jordan M. Fletcher & D. Arne Scott & Lucia Lombardi & Guto G. Rhys & Tania J. LaGambina & Ulrike Obst & Antony J. Burton & Jessica A. Cross & George Davies & F, 2023. "Differential sensing with arrays of de novo designed peptide assemblies," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- Daniel P. Cetnar & Ayaan Hossain & Grace E. Vezeau & Howard M. Salis, 2024. "Predicting synthetic mRNA stability using massively parallel kinetic measurements, biophysical modeling, and machine learning," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Robert E. Jefferson & Aurélien Oggier & Andreas Füglistaler & Nicolas Camviel & Mahdi Hijazi & Ana Rico Villarreal & Caroline Arber & Patrick Barth, 2023. "Computational design of dynamic receptor—peptide signaling complexes applied to chemotaxis," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
- Willow Coyote-Maestas & David Nedrud & Antonio Suma & Yungui He & Kenneth A. Matreyek & Douglas M. Fowler & Vincenzo Carnevale & Chad L. Myers & Daniel Schmidt, 2021. "Probing ion channel functional architecture and domain recombination compatibility by massively parallel domain insertion profiling," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
- Zhong Guo & Rinky D. Parakra & Ying Xiong & Wayne A. Johnston & Patricia Walden & Selvakumar Edwardraja & Shayli Varasteh Moradi & Jacobus P. J. Ungerer & Hui-wang Ai & Jonathan J. Phillips & Kirill A, 2022. "Engineering and exploiting synthetic allostery of NanoLuc luciferase," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51907-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.