IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34778-5.html
   My bibliography  Save this article

Pre-equilibrium biosensors as an approach towards rapid and continuous molecular measurements

Author

Listed:
  • Nicolò Maganzini

    (Stanford University)

  • Ian Thompson

    (Stanford University)

  • Brandon Wilson

    (Stanford University)

  • Hyongsok Tom Soh

    (Stanford University
    Stanford University)

Abstract

Almost all biosensors that use ligand-receptor binding operate under equilibrium conditions. However, at low ligand concentrations, the equilibration with the receptor (e.g., antibodies and aptamers) becomes slow and thus equilibrium-based biosensors are inherently limited in making measurements that are both rapid and sensitive. In this work, we provide a theoretical foundation for a method through which biosensors can quantitatively measure ligand concentration before reaching equilibrium. Rather than only measuring receptor binding at a single time-point, the pre-equilibrium approach leverages the receptor’s kinetic response to instantaneously quantify the changing ligand concentration. Importantly, by analyzing the biosensor output in frequency domain, rather than in the time domain, we show the degree to which noise in the biosensor affects the accuracy of the pre-equilibrium approach. Through this analysis, we provide the conditions under which the signal-to-noise ratio of the biosensor can be maximized for a given target concentration range and rate of change. As a model, we apply our theoretical analysis to continuous insulin measurement and show that with a properly selected antibody, the pre-equilibrium approach could make the continuous tracking of physiological insulin fluctuations possible.

Suggested Citation

  • Nicolò Maganzini & Ian Thompson & Brandon Wilson & Hyongsok Tom Soh, 2022. "Pre-equilibrium biosensors as an approach towards rapid and continuous molecular measurements," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34778-5
    DOI: 10.1038/s41467-022-34778-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34778-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34778-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Brandon D. Wilson & Amani A. Hariri & Ian A. P. Thompson & Michael Eisenstein & H. Tom Soh, 2019. "Independent control of the thermodynamic and kinetic properties of aptamer switches," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Heonjoon Lee & Tian Xie & Byunghwa Kang & Xinjie Yu & Samuel W. Schaffter & Rebecca Schulman, 2024. "Plug-and-play protein biosensors using aptamer-regulated in vitro transcription," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alex M. Yoshikawa & Alexandra E. Rangel & Liwei Zheng & Leighton Wan & Linus A. Hein & Amani A. Hariri & Michael Eisenstein & H. Tom Soh, 2023. "A massively parallel screening platform for converting aptamers into molecular switches," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34778-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.