IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51753-4.html
   My bibliography  Save this article

Unlocking multi-photon excited luminescence in pyrazolate trinuclear gold clusters for dynamic cell imaging

Author

Listed:
  • Yu-Xin Chen

    (School of Chemical Engineering and Technology, Sun Yat-sen University
    Sun Yat-sen University)

  • Haidong Yu

    (Sun Yat-sen University)

  • Lihua Wu

    (Sun Yat-sen University)

  • Yuan-Jun Tong

    (Southwest Jiaotong University)

  • Jianqiao Xu

    (Sun Yat-sen University)

  • Huan Pang

    (School of Chemistry and Chemical Engineering, Yangzhou University)

  • Chao Wu

    (Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology)

  • Tian Tian

    (School of Chemistry and Chemical Engineering, Yangzhou University)

  • Gangfeng Ouyang

    (School of Chemical Engineering and Technology, Sun Yat-sen University
    Sun Yat-sen University)

Abstract

The family of coinage-metal-based cyclic trinuclear complexes exhibits abundant photophysical properties, promising for diverse applications. However, their utility in biochemistry is often hindered by large particle size and strong hydrophobicity. Meanwhile, the investigation into multi-photon excited luminescence within this family remained undocumented, limiting their potential in bio-imaging. Herein, we unveil the multi-photon excited luminescent properties of pyrazolate-based trinuclear gold(I) clusters, facilitated by excimeric gold(I)···gold(I) interactions, revealing a nonlinear optical phenomenon within this family. Furthermore, to address issues of poor biocompatibility, we employ electrospinning coupled with hydroxypropyl-beta-cyclodextrin as the matrix to fabricate a flexible, durable, transparent, and red emissive film with a photoluminescence quantum yield as high as 88.3%. This strategy not only produces the film with sufficient hydrophilicity and stability, but also achieves the downsizing of trinuclear gold(I) clusters from microscale to nanoscale. Following the instantaneous dissolution of the film in the media, the released trinuclear gold(I) nanoparticles have illuminated cells and bacteria through a real-time, non-toxic, multi-photon bio-imaging approach. This achievement offers a fresh approach for utilizing coinage-metal-based cyclic trinuclear complexes in biochemical fields.

Suggested Citation

  • Yu-Xin Chen & Haidong Yu & Lihua Wu & Yuan-Jun Tong & Jianqiao Xu & Huan Pang & Chao Wu & Tian Tian & Gangfeng Ouyang, 2024. "Unlocking multi-photon excited luminescence in pyrazolate trinuclear gold clusters for dynamic cell imaging," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51753-4
    DOI: 10.1038/s41467-024-51753-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51753-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51753-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tian Tian & Yuxuan Fang & Wenhui Wang & Meifang Yang & Ying Tan & Chuan Xu & Shuo Zhang & Yuxin Chen & Mingyi Xu & Bin Cai & Wu-Qiang Wu, 2023. "Durable organic nonlinear optical membranes for thermotolerant lightings and in vivo bioimaging," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Pei-Ye You & Kai-Ming Mo & Yu-Mei Wang & Qiang Gao & Xiao-Chun Lin & Jia-Tong Lin & Mo Xie & Rong-Jia Wei & Guo-Hong Ning & Dan Li, 2024. "Reversible modulation of interlayer stacking in 2D copper-organic frameworks for tailoring porosity and photocatalytic activity," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Jie Luo & Xiao Luo & Mo Xie & Hao-Zhen Li & Haiyan Duan & Hou-Gan Zhou & Rong-Jia Wei & Guo-Hong Ning & Dan Li, 2022. "Selective and rapid extraction of trace amount of gold from complex liquids with silver(I)-organic frameworks," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Tian Tian & Meifang Yang & Yuxuan Fang & Shuo Zhang & Yuxin Chen & Lianzhou Wang & Wu-Qiang Wu, 2023. "Large-area waterproof and durable perovskite luminescent textiles," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huazhang Guo & Yuhao Lu & Zhendong Lei & Hong Bao & Mingwan Zhang & Zeming Wang & Cuntai Guan & Bijun Tang & Zheng Liu & Liang Wang, 2024. "Machine learning-guided realization of full-color high-quantum-yield carbon quantum dots," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Kaixing Fu & Xia Liu & Xiaolin Zhang & Shiqing Zhou & Nanwen Zhu & Yong Pei & Jinming Luo, 2024. "Utilizing cost-effective pyrocarbon for highly efficient gold retrieval from e-waste leachate," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Liping Zheng & Zhengqing Zhang & Zhuozhi Lai & Shijie Yin & Weipeng Xian & Qing-Wei Meng & Zhifeng Dai & Yubing Xiong & Xiangju Meng & Shengqian Ma & Feng-Shou Xiao & Qi Sun, 2024. "Covalent organic framework membrane reactor for boosting catalytic performance," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51753-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.