IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51622-0.html
   My bibliography  Save this article

Uncovering avalanche sources via acceleration measurements

Author

Listed:
  • Emil Bronstein

    (Technion – Israel Institute of Technology)

  • Eilon Faran

    (Technion – Israel Institute of Technology)

  • Ronen Talmon

    (Technion – Israel Institute of Technology)

  • Doron Shilo

    (Technion – Israel Institute of Technology)

Abstract

Avalanche sources describe rapid and local events that govern deformation processes in various materials. The fundamental differences between an avalanche source and its associated measured acoustic emission (AE) signal are encoded in the acoustic transfer function, which undesirably modifies the properties of the source. Consequently, information about the physical characteristics of avalanche sources is scarce and its exposure poses a great challenge. We introduce a novel experimental method based on acceleration measurements, which eliminates the effect of the transfer function and distills the avalanche source. Applying this method to deformation twinning in magnesium shows that the amplitudes and characteristic times of avalanche sources are unrelated by a clear physical law. Conversely, the amplitudes and durations of AE signals are related by a power law, which is attributed to the transfer function. Using our method, we identify and compute a new feature of avalanche sources, which is directly linked to the growth rate of the twinned volume. This feature displays a power-law distribution, implying an unpredicted behavior at dynamic criticality. Simultaneously, the characteristic times of avalanche sources possess an intrinsic upper bound, indicating a predicted limit that relates to the underlying physical process of twinning.

Suggested Citation

  • Emil Bronstein & Eilon Faran & Ronen Talmon & Doron Shilo, 2024. "Uncovering avalanche sources via acceleration measurements," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51622-0
    DOI: 10.1038/s41467-024-51622-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51622-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51622-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Blai Casals & Guillaume F. Nataf & Ekhard K. H. Salje, 2021. "Avalanche criticality during ferroelectric/ferroelastic switching," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    2. Lasse Laurson & Xavier Illa & Stéphane Santucci & Ken Tore Tallakstad & Knut Jørgen Måløy & Mikko J Alava, 2013. "Evolution of the average avalanche shape with the universality class," Nature Communications, Nature, vol. 4(1), pages 1-6, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Janićević, Sanja & Mijatović, Svetislav & Spasojević, Djordje, 2023. "Finite driving rate effects in the nonequilibrium athermal random field Ising model of thin systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 614(C).
    2. Spasojević, Djordje & Janićević, Sanja, 2022. "Two-dimensional ferromagnetic systems with finite driving," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    3. Nkomom, Théodule Nkoa & Ndzana, Fabien II & Okaly, Joseph Brizar & Mvogo, Alain, 2021. "Dynamics of nonlinear waves in a Burridge and Knopoff model for earthquake with long-range interactions, velocity-dependent and hydrodynamics friction forces," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    4. Cam-Phu Thi Nguyen & Peggy Schoenherr & Ekhard K. H. Salje & Jan Seidel, 2023. "Crackling noise microscopy," Nature Communications, Nature, vol. 14(1), pages 1-6, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51622-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.