IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40665-4.html
   My bibliography  Save this article

Crackling noise microscopy

Author

Listed:
  • Cam-Phu Thi Nguyen

    (School of Materials Science and Engineering, UNSW Sydney)

  • Peggy Schoenherr

    (School of Materials Science and Engineering, UNSW Sydney
    ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), UNSW Sydney)

  • Ekhard K. H. Salje

    (Cambridge University)

  • Jan Seidel

    (School of Materials Science and Engineering, UNSW Sydney
    ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), UNSW Sydney)

Abstract

Crackling noise is a scale-invariant phenomenon found in various driven nonlinear dynamical material systems as a response to external stimuli such as force or external fields. Jerky material movements in the form of avalanches can span many orders of magnitude in size and follow universal scaling rules described by power laws. The concept was originally studied as Barkhausen noise in magnetic materials and now is used in diverse fields from earthquake research and building materials monitoring to fundamental research involving phase transitions and neural networks. Here, we demonstrate a method for nanoscale crackling noise measurements based on AFM nanoindentation, where the AFM probe can be used to study the crackling of individual nanoscale features, a technique we call crackling noise microscopy. The method is successfully applied to investigate the crackling of individual topological defects, i.e. ferroelectric domain walls. We show that critical exponents for avalanches are altered at these nanoscale features, leading to a suppression of mixed-criticality, which is otherwise present in domains. The presented concept opens the possibility of investigating the crackling of individual nanoscale features in a wide range of material systems.

Suggested Citation

  • Cam-Phu Thi Nguyen & Peggy Schoenherr & Ekhard K. H. Salje & Jan Seidel, 2023. "Crackling noise microscopy," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40665-4
    DOI: 10.1038/s41467-023-40665-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40665-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40665-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Blai Casals & Guillaume F. Nataf & Ekhard K. H. Salje, 2021. "Avalanche criticality during ferroelectric/ferroelastic switching," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    2. Malte Schröder & S. H. Ebrahimnazhad Rahbari & Jan Nagler, 2013. "Crackling noise in fractional percolation," Nature Communications, Nature, vol. 4(1), pages 1-6, October.
    3. Q. Rizzardi & C. McElfresh & G. Sparks & D. D. Stauffer & J. Marian & R. Maaß, 2022. "Mild-to-wild plastic transition is governed by athermal screw dislocation slip in bcc Nb," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Excell, Lauren E. & Jain, Rishee K., 2024. "Examining the impact of energy efficiency retrofits and vegetation on energy performance of institutional buildings: An equity-driven analysis," Applied Energy, Elsevier, vol. 357(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emil Bronstein & Eilon Faran & Ronen Talmon & Doron Shilo, 2024. "Uncovering avalanche sources via acceleration measurements," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. H. Wang & P. Y. Yang & W. J. Zhao & S. H. Ma & J. H. Hou & Q. F. He & C. L. Wu & H. A. Chen & Q. Wang & Q. Cheng & B. S. Guo & J. C. Qiao & W. J. Lu & S. J. Zhao & X. D. Xu & C. T. Liu & Y. Liu & C. W, 2024. "Lattice distortion enabling enhanced strength and plasticity in high entropy intermetallic alloy," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40665-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.