IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51564-7.html
   My bibliography  Save this article

Qualitative and quantitative electrochemiluminescence evaluation of trace Pt single-atom in MXenes

Author

Listed:
  • Yacheng Shi

    (Tsinghua University)

  • Yang Liu

    (Tsinghua University)

Abstract

The analysis of trace Pt single-atom (SA) represents a significant challenge, given the crucial role of single-atom platinum (Pt) in energy storage and electrocatalysis. Here, we present an electrochemiluminescence (ECL) platform that enables the qualitative and quantitative analysis of trace Pt SA using luminol as the ECL luminophore. It is observed that different Pt species in Ti3-xC2Ty MXenes resulted in distinct reactive oxygen species (ROS) potentials for luminol cathodic electrochemiluminescence (ECL), achieved through distinctive oxygen reduction reaction (ORR) pathways, in which oxygen acts as the co-reactant. Furthermore, the cathodic luminol ECL intensity increases in proportion to the Pt atom content, thereby enabling quantitative analysis of trace Pt single atoms. The detection limit is 0.014 wt%, which is comparable to the current mainstream Pt SA quantification techniques. By utilizing this ECL method, it is possible to successfully evaluate both qualitatively and quantitatively the changes in Pt SA during the ORR processes. This ECL platform provides a valuable toolbox for the analysis of Pt SA catalysts and for the evaluation of the mechanisms involved in electrocatalysis applications.

Suggested Citation

  • Yacheng Shi & Yang Liu, 2024. "Qualitative and quantitative electrochemiluminescence evaluation of trace Pt single-atom in MXenes," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51564-7
    DOI: 10.1038/s41467-024-51564-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51564-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51564-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yuanyuan Li & Matthew Kottwitz & Joshua L. Vincent & Michael J. Enright & Zongyuan Liu & Lihua Zhang & Jiahao Huang & Sanjaya D. Senanayake & Wei-Chang D. Yang & Peter A. Crozier & Ralph G. Nuzzo & An, 2021. "Dynamic structure of active sites in ceria-supported Pt catalysts for the water gas shift reaction," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eugenio Meloni & Marco Martino & Giuseppina Iervolino & Concetta Ruocco & Simona Renda & Giovanni Festa & Vincenzo Palma, 2022. "The Route from Green H 2 Production through Bioethanol Reforming to CO 2 Catalytic Conversion: A Review," Energies, MDPI, vol. 15(7), pages 1-36, March.
    2. Hao Meng & Yusen Yang & Tianyao Shen & Wei Liu & Lei Wang & Pan Yin & Zhen Ren & Yiming Niu & Bingsen Zhang & Lirong Zheng & Hong Yan & Jian Zhang & Feng-Shou Xiao & Min Wei & Xue Duan, 2023. "A strong bimetal-support interaction in ethanol steam reforming," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Hao-Xin Liu & Jin-Ying Li & Xuetao Qin & Chao Ma & Wei-Wei Wang & Kai Xu & Han Yan & Dequan Xiao & Chun-Jiang Jia & Qiang Fu & Ding Ma, 2022. "Ptn–Ov synergistic sites on MoOx/γ-Mo2N heterostructure for low-temperature reverse water–gas shift reaction," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Dongpeng Zhang & Yanxiao Li & Pengfei Wang & Jinyong Qu & Yi Li & Sihui Zhan, 2023. "Dynamic active-site induced by host-guest interactions boost the Fenton-like reaction for organic wastewater treatment," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Sai Zhang & Yuxuan Liu & Mingkai Zhang & Yuanyuan Ma & Jun Hu & Yongquan Qu, 2022. "Sustainable production of hydrogen with high purity from methanol and water at low temperatures," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51564-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.