IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51558-5.html
   My bibliography  Save this article

Directly visualizing nematic superconductivity driven by the pair density wave in NbSe2

Author

Listed:
  • Lu Cao

    (University of Chinese Academy of Sciences)

  • Yucheng Xue

    (University of Chinese Academy of Sciences)

  • Yingbo Wang

    (University of Chinese Academy of Sciences)

  • Fu-Chun Zhang

    (University of Chinese Academy of Sciences)

  • Jian Kang

    (ShanghaiTech University)

  • Hong-Jun Gao

    (University of Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Jinhai Mao

    (University of Chinese Academy of Sciences)

  • Yuhang Jiang

    (University of Chinese Academy of Sciences)

Abstract

Pair density wave (PDW) is a distinct superconducting state characterized by a periodic modulation of its order parameter in real space. Its intricate interplay with the charge density wave (CDW) state is a continuing topic of interest in condensed matter physics. While PDW states have been discovered in cuprates and other unconventional superconductors, the understanding of diverse PDWs and their interactions with different types of CDWs remains limited. Here, utilizing scanning tunneling microscopy, we unveil the subtle correlations between PDW ground states and two distinct CDW phases — namely, anion-centered-CDW (AC-CDW) and hollow-centered-CDW (HC-CDW) — in 2H-NbSe2. In both CDW regions, we observe coexisting PDWs with a commensurate structure that aligns with the underlying CDW phase. The superconducting gap size, Δ(r), related to the pairing order parameter is in phase with the charge density in both CDW regions. Meanwhile, the coherence peak height, H(r), qualitatively reflecting the electron-pair density, exhibits a phase difference of approximately 2π/3 relative to the CDW. The three-fold rotational symmetry is preserved in the HC-CDW region but is spontaneously broken in the AC-CDW region due to the PDW state, leading to the emergence of nematic superconductivity.

Suggested Citation

  • Lu Cao & Yucheng Xue & Yingbo Wang & Fu-Chun Zhang & Jian Kang & Hong-Jun Gao & Jinhai Mao & Yuhang Jiang, 2024. "Directly visualizing nematic superconductivity driven by the pair density wave in NbSe2," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51558-5
    DOI: 10.1038/s41467-024-51558-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51558-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51558-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hui Chen & Haitao Yang & Bin Hu & Zhen Zhao & Jie Yuan & Yuqing Xing & Guojian Qian & Zihao Huang & Geng Li & Yuhan Ye & Sheng Ma & Shunli Ni & Hua Zhang & Qiangwei Yin & Chunsheng Gong & Zhijun Tu & , 2021. "Roton pair density wave in a strong-coupling kagome superconductor," Nature, Nature, vol. 599(7884), pages 222-228, November.
    2. Qiangqiang Gu & Joseph P. Carroll & Shuqiu Wang & Sheng Ran & Christopher Broyles & Hasan Siddiquee & Nicholas P. Butch & Shanta R. Saha & Johnpierre Paglione & J. C. Séamus Davis & Xiaolong Liu, 2023. "Detection of a pair density wave state in UTe2," Nature, Nature, vol. 618(7967), pages 921-927, June.
    3. M. H. Hamidian & S. D. Edkins & Sang Hyun Joo & A. Kostin & H. Eisaki & S. Uchida & M. J. Lawler & E.-A. Kim & A. P. Mackenzie & K. Fujita & Jinho Lee & J. C. Séamus Davis, 2016. "Detection of a Cooper-pair density wave in Bi2Sr2CaCu2O8+x," Nature, Nature, vol. 532(7599), pages 343-347, April.
    4. Puhua Wan & Oleksandr Zheliuk & Noah F. Q. Yuan & Xiaoli Peng & Le Zhang & Minpeng Liang & Uli Zeitler & Steffen Wiedmann & Nigel E. Hussey & Thomas T. M. Palstra & Jianting Ye, 2023. "Orbital Fulde–Ferrell–Larkin–Ovchinnikov state in an Ising superconductor," Nature, Nature, vol. 619(7968), pages 46-51, July.
    5. Chi Ming Yim & Christopher Trainer & Ramakrishna Aluru & Shun Chi & Walter N. Hardy & Ruixing Liang & Doug Bonn & Peter Wahl, 2018. "Discovery of a strain-stabilised smectic electronic order in LiFeAs," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    6. Yanzhao Liu & Tianheng Wei & Guanyang He & Yi Zhang & Ziqiang Wang & Jian Wang, 2023. "Pair density wave state in a monolayer high-Tc iron-based superconductor," Nature, Nature, vol. 618(7967), pages 934-939, June.
    7. Yuhang Jiang & Xinyuan Lai & Kenji Watanabe & Takashi Taniguchi & Kristjan Haule & Jinhai Mao & Eva Y. Andrei, 2019. "Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene," Nature, Nature, vol. 573(7772), pages 91-95, September.
    8. Zengyi Du & Hui Li & Sang Hyun Joo & Elizabeth P. Donoway & Jinho Lee & J. C. Séamus Davis & Genda Gu & Peter D. Johnson & Kazuhiro Fujita, 2020. "Imaging the energy gap modulations of the cuprate pair-density-wave state," Nature, Nature, vol. 580(7801), pages 65-70, April.
    9. Lu Cao & Wenyao Liu & Geng Li & Guangyang Dai & Qi Zheng & Yuxin Wang & Kun Jiang & Shiyu Zhu & Li Huang & Lingyuan Kong & Fazhi Yang & Xiancheng Wang & Wu Zhou & Xiao Lin & Jiangping Hu & Changqing J, 2021. "Two distinct superconducting states controlled by orientations of local wrinkles in LiFeAs," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander LaFleur & Hong Li & Corey E. Frank & Muxian Xu & Siyu Cheng & Ziqiang Wang & Nicholas P. Butch & Ilija Zeljkovic, 2024. "Inhomogeneous high temperature melting and decoupling of charge density waves in spin-triplet superconductor UTe2," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Shinji Kawasaki & Nao Tsukuda & Chengtian Lin & Guo-qing Zheng, 2024. "Strain-induced long-range charge-density wave order in the optimally doped Bi2Sr2−xLaxCuO6 superconductor," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Bin Hu & Hui Chen & Yuhan Ye & Zihao Huang & Xianghe Han & Zhen Zhao & Hongqin Xiao & Xiao Lin & Haitao Yang & Ziqiang Wang & Hong-Jun Gao, 2024. "Evidence of a distinct collective mode in Kagome superconductors," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Lun-Hui Hu & Rui-Xing Zhang, 2024. "Dislocation Majorana bound states in iron-based superconductors," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Yigui Zhong & Shaozhi Li & Hongxiong Liu & Yuyang Dong & Kohei Aido & Yosuke Arai & Haoxiang Li & Weilu Zhang & Youguo Shi & Ziqiang Wang & Shik Shin & H. N. Lee & H. Miao & Takeshi Kondo & Kozo Okaza, 2023. "Testing electron–phonon coupling for the superconductivity in kagome metal CsV3Sb5," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    6. Lu Cao & Wenyao Liu & Geng Li & Guangyang Dai & Qi Zheng & Yuxin Wang & Kun Jiang & Shiyu Zhu & Li Huang & Lingyuan Kong & Fazhi Yang & Xiancheng Wang & Wu Zhou & Xiao Lin & Jiangping Hu & Changqing J, 2021. "Two distinct superconducting states controlled by orientations of local wrinkles in LiFeAs," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    7. Yu-Bo Liu & Jing Zhou & Congjun Wu & Fan Yang, 2023. "Charge-4e superconductivity and chiral metal in 45°-twisted bilayer cuprates and related bilayers," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    8. Anushree Datta & M. J. Calderón & A. Camjayi & E. Bascones, 2023. "Heavy quasiparticles and cascades without symmetry breaking in twisted bilayer graphene," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    9. Yeahan Sur & Kwang-Tak Kim & Sukho Kim & Kee Hoon Kim, 2023. "Optimized superconductivity in the vicinity of a nematic quantum critical point in the kagome superconductor Cs(V1-xTix)3Sb5," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    10. Xinjian Wei & Congkuan Tian & Hang Cui & Yuxin Zhai & Yongkai Li & Shaobo Liu & Yuanjun Song & Ya Feng & Miaoling Huang & Zhiwei Wang & Yi Liu & Qihua Xiong & Yugui Yao & X. C. Xie & Jian-Hao Chen, 2024. "Three-dimensional hidden phase probed by in-plane magnetotransport in kagome metal CsV3Sb5 thin flakes," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    11. Si-yu Li & Zhengwen Wang & Yucheng Xue & Yingbo Wang & Shihao Zhang & Jianpeng Liu & Zheng Zhu & Kenji Watanabe & Takashi Taniguchi & Hong-jun Gao & Yuhang Jiang & Jinhai Mao, 2022. "Imaging topological and correlated insulating states in twisted monolayer-bilayer graphene," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    12. Asish K. Kundu & Xiong Huang & Eric Seewald & Ethan Ritz & Santanu Pakhira & Shuai Zhang & Dihao Sun & Simon Turkel & Sara Shabani & Turgut Yilmaz & Elio Vescovo & Cory R. Dean & David C. Johnston & T, 2024. "Low-energy electronic structure in the unconventional charge-ordered state of ScV6Sn6," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Huimin Zhang & Basu Dev Oli & Qiang Zou & Xu Guo & Zhengfei Wang & Lian Li, 2023. "Visualizing symmetry-breaking electronic orders in epitaxial Kagome magnet FeSn films," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    14. De Leo, Mariano & Borgna, Juan Pablo & García Ovalle, Diego, 2024. "On the existence of nematic-superconducting states in the Ginzburg–Landau regime," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    15. Boqin Song & Tianping Ying & Xianxin Wu & Wei Xia & Qiangwei Yin & Qinghua Zhang & Yanpeng Song & Xiaofan Yang & Jiangang Guo & Lin Gu & Xiaolong Chen & Jiangping Hu & Andreas P. Schnyder & Hechang Le, 2023. "Anomalous enhancement of charge density wave in kagome superconductor CsV3Sb5 approaching the 2D limit," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    16. Song-Bo Zhang & Lun-Hui Hu & Titus Neupert, 2024. "Finite-momentum Cooper pairing in proximitized altermagnets," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    17. Sen Zhou & Ziqiang Wang, 2022. "Chern Fermi pocket, topological pair density wave, and charge-4e and charge-6e superconductivity in kagomé superconductors," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    18. Ying Xiang & Qing Li & Yongkai Li & Wei Xie & Huan Yang & Zhiwei Wang & Yugui Yao & Hai-Hu Wen, 2021. "Twofold symmetry of c-axis resistivity in topological kagome superconductor CsV3Sb5 with in-plane rotating magnetic field," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    19. D. Subires & A. Korshunov & A. H. Said & L. Sánchez & Brenden R. Ortiz & Stephen D. Wilson & A. Bosak & S. Blanco-Canosa, 2023. "Order-disorder charge density wave instability in the kagome metal (Cs,Rb)V3Sb5," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    20. Li Huang & Xianghua Kong & Qi Zheng & Yuqing Xing & Hui Chen & Yan Li & Zhixin Hu & Shiyu Zhu & Jingsi Qiao & Yu-Yang Zhang & Haixia Cheng & Zhihai Cheng & Xianggang Qiu & Enke Liu & Hechang Lei & Xia, 2023. "Discovery and construction of surface kagome electronic states induced by p-d electronic hybridization in Co3Sn2S2," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51558-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.