IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51153-8.html
   My bibliography  Save this article

HMGA1 orchestrates chromatin compartmentalization and sequesters genes into 3D networks coordinating senescence heterogeneity

Author

Listed:
  • Ioana Olan

    (University of Cambridge)

  • Masami Ando-Kuri

    (University of Cambridge
    The Netherlands Cancer Institute)

  • Aled J. Parry

    (University of Cambridge
    Altos Labs Cambridge Institute)

  • Tetsuya Handa

    (University of Cambridge)

  • Stefan Schoenfelder

    (The Babraham Institute)

  • Peter Fraser

    (Babraham Research Campus
    Enhanc3D Genomics Ltd)

  • Yasuyuki Ohkawa

    (Kyushu University)

  • Hiroshi Kimura

    (Tokyo Institute of Technology)

  • Masako Narita

    (University of Cambridge)

  • Masashi Narita

    (University of Cambridge
    Tokyo Institute of Technology)

Abstract

HMGA1 is an abundant non-histone chromatin protein that has been implicated in embryonic development, cancer, and cellular senescence, but its specific role remains elusive. Here, we combine functional genomics approaches with graph theory to investigate how HMGA1 genomic deposition controls high-order chromatin networks in an oncogene-induced senescence model. While the direct role of HMGA1 in gene activation has been described previously, we find little evidence to support this. Instead, we show that the heterogeneous linear distribution of HMGA1 drives a specific 3D chromatin organization. HMGA1-dense loci form highly interactive networks, similar to, but independent of, constitutive heterochromatic loci. This, coupled with the exclusion of HMGA1-poor chromatin regions, leads to coordinated gene regulation through the repositioning of genes. In the absence of HMGA1, the whole process is largely reversed, but many regulatory interactions also emerge, amplifying the inflammatory senescence-associated secretory phenotype. Such HMGA1-mediated fine-tuning of gene expression contributes to the heterogeneous nature of senescence at the single-cell level. A similar ‘buffer’ effect of HMGA1 on inflammatory signalling is also detected in lung cancer cells. Our study reveals a mechanism through which HMGA1 modulates chromatin compartmentalization and gene regulation in senescence and beyond.

Suggested Citation

  • Ioana Olan & Masami Ando-Kuri & Aled J. Parry & Tetsuya Handa & Stefan Schoenfelder & Peter Fraser & Yasuyuki Ohkawa & Hiroshi Kimura & Masako Narita & Masashi Narita, 2024. "HMGA1 orchestrates chromatin compartmentalization and sequesters genes into 3D networks coordinating senescence heterogeneity," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51153-8
    DOI: 10.1038/s41467-024-51153-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51153-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51153-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Aled J. Parry & Matthew Hoare & Dóra Bihary & Robert Hänsel-Hertsch & Stephen Smith & Kosuke Tomimatsu & Elizabeth Mannion & Amy Smith & Paula D’Santos & I. Alasdair Russell & Shankar Balasubramanian , 2018. "NOTCH-mediated non-cell autonomous regulation of chromatin structure during senescence," Nature Communications, Nature, vol. 9(1), pages 1-15, December.
    2. Nayoung Kim & Hong Kwan Kim & Kyungjong Lee & Yourae Hong & Jong Ho Cho & Jung Won Choi & Jung-Il Lee & Yeon-Lim Suh & Bo Mi Ku & Hye Hyeon Eum & Soyean Choi & Yoon-La Choi & Je-Gun Joung & Woong-Yang, 2020. "Single-cell RNA sequencing demonstrates the molecular and cellular reprogramming of metastatic lung adenocarcinoma," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
    3. Ioana Olan & Aled J. Parry & Stefan Schoenfelder & Masako Narita & Yoko Ito & Adelyne S. L. Chan & Guy St.C. Slater & Dóra Bihary & Masashige Bando & Katsuhiko Shirahige & Hiroshi Kimura & Shamith A., 2020. "Transcription-dependent cohesin repositioning rewires chromatin loops in cellular senescence," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    4. Marco Cecco & Takahiro Ito & Anna P. Petrashen & Amy E. Elias & Nicholas J. Skvir & Steven W. Criscione & Alberto Caligiana & Greta Brocculi & Emily M. Adney & Jef D. Boeke & Oanh Le & Christian Beaus, 2019. "L1 drives IFN in senescent cells and promotes age-associated inflammation," Nature, Nature, vol. 566(7742), pages 73-78, February.
    5. Osamu Iwasaki & Hideki Tanizawa & Kyoung-Dong Kim & Andrew Kossenkov & Timothy Nacarelli & Sanki Tashiro & Sonali Majumdar & Louise C. Showe & Rugang Zhang & Ken-ichi Noma, 2019. "Involvement of condensin in cellular senescence through gene regulation and compartmental reorganization," Nature Communications, Nature, vol. 10(1), pages 1-20, December.
    6. Marco Cecco & Takahiro Ito & Anna P. Petrashen & Amy E. Elias & Nicholas J. Skvir & Steven W. Criscione & Alberto Caligiana & Greta Brocculi & Emily M. Adney & Jef D. Boeke & Oanh Le & Christian Beaus, 2019. "Author Correction: L1 drives IFN in senescent cells and promotes age-associated inflammation," Nature, Nature, vol. 572(7767), pages 5-5, August.
    7. Naohiro Kuwayama & Tomoya Kujirai & Yusuke Kishi & Rina Hirano & Kenta Echigoya & Lingyan Fang & Sugiko Watanabe & Mitsuyoshi Nakao & Yutaka Suzuki & Kei-ichiro Ishiguro & Hitoshi Kurumizaka & Yukiko , 2023. "HMGA2 directly mediates chromatin condensation in association with neuronal fate regulation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Yu & Xin Wang & Jordan Fox & Ruofan Yu & Pilendra Thakre & Brenna McCauley & Nicolas Nikoloutsos & Yang Yu & Qian Li & P. J. Hastings & Weiwei Dang & Kaifu Chen & Grzegorz Ira, 2024. "Yeast EndoG prevents genome instability by degrading extranuclear DNA species," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Yung-Heng Chang & Josh Dubnau, 2023. "Endogenous retroviruses and TDP-43 proteinopathy form a sustaining feedback driving intercellular spread of Drosophila neurodegeneration," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Alexandra M. D’Ordine & Gerwald Jogl & John M. Sedivy, 2024. "Identification and characterization of small molecule inhibitors of the LINE-1 retrotransposon endonuclease," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Zhengyi Zhen & Yu Chen & Haiyan Wang & Huanyin Tang & Haiping Zhang & Haipeng Liu & Ying Jiang & Zhiyong Mao, 2023. "Nuclear cGAS restricts L1 retrotransposition by promoting TRIM41-mediated ORF2p ubiquitination and degradation," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Bert I. Crawford & Mary Jo Talley & Joshua Russman & James Riddle & Sabrina Torres & Troy Williams & Michelle S. Longworth, 2024. "Condensin-mediated restriction of retrotransposable elements facilitates brain development in Drosophila melanogaster," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    6. Vanessa López-Polo & Mate Maus & Emmanouil Zacharioudakis & Miguel Lafarga & Camille Stephan-Otto Attolini & Francisco D. M. Marques & Marta Kovatcheva & Evripidis Gavathiotis & Manuel Serrano, 2024. "Release of mitochondrial dsRNA into the cytosol is a key driver of the inflammatory phenotype of senescent cells," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    7. Sudip Kumar Paul & Motohiko Oshima & Ashwini Patil & Masamitsu Sone & Hisaya Kato & Yoshiro Maezawa & Hiyori Kaneko & Masaki Fukuyo & Bahityar Rahmutulla & Yasuo Ouchi & Kyoko Tsujimura & Mahito Nakan, 2024. "Retrotransposons in Werner syndrome-derived macrophages trigger type I interferon-dependent inflammation in an atherosclerosis model," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    8. Evelyn Kabirova & Anastasiya Ryzhkova & Varvara Lukyanchikova & Anna Khabarova & Alexey Korablev & Tatyana Shnaider & Miroslav Nuriddinov & Polina Belokopytova & Alexander Smirnov & Nikita V. Khotskin, 2024. "TAD border deletion at the Kit locus causes tissue-specific ectopic activation of a neighboring gene," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    9. Magnus Zethoven & Luciano Martelotto & Andrew Pattison & Blake Bowen & Shiva Balachander & Aidan Flynn & Fernando J. Rossello & Annette Hogg & Julie A. Miller & Zdenek Frysak & Sean Grimmond & Lauren , 2022. "Single-nuclei and bulk-tissue gene-expression analysis of pheochromocytoma and paraganglioma links disease subtypes with tumor microenvironment," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    10. Han Luo & Xuyang Xia & Li-Bin Huang & Hyunsu An & Minyuan Cao & Gyeong Dae Kim & Hai-Ning Chen & Wei-Han Zhang & Yang Shu & Xiangyu Kong & Zhixiang Ren & Pei-Heng Li & Yang Liu & Huairong Tang & Rongh, 2022. "Pan-cancer single-cell analysis reveals the heterogeneity and plasticity of cancer-associated fibroblasts in the tumor microenvironment," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    11. Yuna Landais & Céline Vallot, 2023. "Multi-modal quantification of pathway activity with MAYA," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    12. Steven Andrew Baker & Shirley Kwok & Gerald J Berry & Thomas J Montine, 2021. "Angiotensin-converting enzyme 2 (ACE2) expression increases with age in patients requiring mechanical ventilation," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-17, February.
    13. Chen Wang & Hideki Tanizawa & Connor Hill & Aaron Havas & Qiang Zhang & Liping Liao & Xue Hao & Xue Lei & Lu Wang & Hao Nie & Yuan Qi & Bin Tian & Alessandro Gardini & Andrew V. Kossenkov & Aaron Gold, 2024. "METTL3-mediated chromatin contacts promote stress granule phase separation through metabolic reprogramming during senescence," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    14. Yang Zhang & Gan Liu & Minzhen Tao & Hui Ning & Wei Guo & Gaofei Yin & Wen Gao & Lifei Feng & Jin Gu & Zhen Xie & Zhigang Huang, 2023. "Integrated transcriptome study of the tumor microenvironment for treatment response prediction in male predominant hypopharyngeal carcinoma," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    15. Gregor Werba & Daniel Weissinger & Emily A. Kawaler & Ende Zhao & Despoina Kalfakakou & Surajit Dhara & Lidong Wang & Heather B. Lim & Grace Oh & Xiaohong Jing & Nina Beri & Lauren Khanna & Tamas Gond, 2023. "Single-cell RNA sequencing reveals the effects of chemotherapy on human pancreatic adenocarcinoma and its tumor microenvironment," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    16. Hai C. T. Nguyen & Bukyung Baik & Sora Yoon & Taesung Park & Dougu Nam, 2023. "Benchmarking integration of single-cell differential expression," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    17. Jae-Won Cho & Seyeon Park & Gamin Kim & Heonjong Han & Hyo Sup Shim & Sunhye Shin & Yong-Soo Bae & Seong Yong Park & Sang-Jun Ha & Insuk Lee & Hye Ryun Kim, 2021. "Dysregulation of TFH-B-TRM lymphocyte cooperation is associated with unfavorable anti-PD-1 responses in EGFR-mutant lung cancer," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    18. Zhoufeng Wang & Zhe Li & Kun Zhou & Chengdi Wang & Lili Jiang & Li Zhang & Ying Yang & Wenxin Luo & Wenliang Qiao & Gang Wang & Yinyun Ni & Shuiping Dai & Tingting Guo & Guiyi Ji & Minjie Xu & Yiying , 2021. "Deciphering cell lineage specification of human lung adenocarcinoma with single-cell RNA sequencing," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    19. Alexander Coulton & Jun Murai & Danwen Qian & Krupa Thakkar & Claire E. Lewis & Kevin Litchfield, 2024. "Using a pan-cancer atlas to investigate tumour associated macrophages as regulators of immunotherapy response," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    20. Christopher J. Hanley & Sara Waise & Matthew J. Ellis & Maria A. Lopez & Wai Y. Pun & Julian Taylor & Rachel Parker & Lucy M. Kimbley & Serena J. Chee & Emily C. Shaw & Jonathan West & Aiman Alzetani , 2023. "Single-cell analysis reveals prognostic fibroblast subpopulations linked to molecular and immunological subtypes of lung cancer," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51153-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.