IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51110-5.html
   My bibliography  Save this article

High-performance deep spiking neural networks with 0.3 spikes per neuron

Author

Listed:
  • Ana Stanojevic

    (IBM Research Europe – Zurich
    École Polytechnique Fédérale de Lausanne)

  • Stanisław Woźniak

    (IBM Research Europe – Zurich)

  • Guillaume Bellec

    (École Polytechnique Fédérale de Lausanne
    École Polytechnique Fédérale de Lausanne)

  • Giovanni Cherubini

    (IBM Research Europe – Zurich)

  • Angeliki Pantazi

    (IBM Research Europe – Zurich)

  • Wulfram Gerstner

    (École Polytechnique Fédérale de Lausanne
    École Polytechnique Fédérale de Lausanne)

Abstract

Communication by rare, binary spikes is a key factor for the energy efficiency of biological brains. However, it is harder to train biologically-inspired spiking neural networks than artificial neural networks. This is puzzling given that theoretical results provide exact mapping algorithms from artificial to spiking neural networks with time-to-first-spike coding. In this paper we analyze in theory and simulation the learning dynamics of time-to-first-spike-networks and identify a specific instance of the vanishing-or-exploding gradient problem. While two choices of spiking neural network mappings solve this problem at initialization, only the one with a constant slope of the neuron membrane potential at threshold guarantees the equivalence of the training trajectory between spiking and artificial neural networks with rectified linear units. For specific image classification architectures comprising feed-forward dense or convolutional layers, we demonstrate that deep spiking neural network models can be effectively trained from scratch on MNIST and Fashion-MNIST datasets, or fine-tuned on large-scale datasets, such as CIFAR10, CIFAR100 and PLACES365, to achieve the exact same performance as that of artificial neural networks, surpassing previous spiking neural networks. Our approach accomplishes high-performance classification with less than 0.3 spikes per neuron, lending itself for an energy-efficient implementation. We also show that fine-tuning spiking neural networks with our robust gradient descent algorithm enables their optimization for hardware implementations with low latency and resilience to noise and quantization.

Suggested Citation

  • Ana Stanojevic & Stanisław Woźniak & Guillaume Bellec & Giovanni Cherubini & Angeliki Pantazi & Wulfram Gerstner, 2024. "High-performance deep spiking neural networks with 0.3 spikes per neuron," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51110-5
    DOI: 10.1038/s41467-024-51110-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51110-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51110-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Simone Carlo Surace & Jean-Pascal Pfister & Wulfram Gerstner & Johanni Brea, 2020. "On the choice of metric in gradient-based theories of brain function," PLOS Computational Biology, Public Library of Science, vol. 16(4), pages 1-13, April.
    2. Gang Yu & Kai Sun & Chao Xu & Xing-Hua Shi & Chong Wu & Ting Xie & Run-Qi Meng & Xiang-He Meng & Kuan-Song Wang & Hong-Mei Xiao & Hong-Wen Deng, 2021. "Accurate recognition of colorectal cancer with semi-supervised deep learning on pathological images," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    3. Yan Zhang & Lin An & Jie Xu & Bo Zhang & W. Jim Zheng & Ming Hu & Jijun Tang & Feng Yue, 2018. "Enhancing Hi-C data resolution with deep convolutional neural network HiCPlus," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    4. Libin Jiao & Rongfang Bie & Hao Wu & Yu Wei & Jixin Ma & Anton Umek & Anton Kos, 2018. "Golf swing classification with multiple deep convolutional neural networks," International Journal of Distributed Sensor Networks, , vol. 14(10), pages 15501477188, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mochen Liao & Kai Lan & Yuan Yao, 2022. "Sustainability implications of artificial intelligence in the chemical industry: A conceptual framework," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 164-182, February.
    2. Pei-Chen Tsai & Tsung-Hua Lee & Kun-Chi Kuo & Fang-Yi Su & Tsung-Lu Michael Lee & Eliana Marostica & Tomotaka Ugai & Melissa Zhao & Mai Chan Lau & Juha P. Väyrynen & Marios Giannakis & Yasutoshi Takas, 2023. "Histopathology images predict multi-omics aberrations and prognoses in colorectal cancer patients," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Yufan Zhou & Tian Li & Lavanya Choppavarapu & Kun Fang & Shili Lin & Victor X. Jin, 2024. "Integration of scHi-C and scRNA-seq data defines distinct 3D-regulated and biological-context dependent cell subpopulations," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Jingxuan Xu & Xiang Xu & Dandan Huang & Yawen Luo & Lin Lin & Xuemei Bai & Yang Zheng & Qian Yang & Yu Cheng & An Huang & Jingyi Shi & Xiaochen Bo & Jin Gu & Hebing Chen, 2024. "A comprehensive benchmarking with interpretation and operational guidance for the hierarchy of topologically associating domains," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    5. Sucithra B. & Angelin Gladston, 2022. "Deep Learning Model for Enhanced Crop Identification From Landsat 8 Images," International Journal of Information Retrieval Research (IJIRR), IGI Global, vol. 12(1), pages 1-24, January.
    6. Darui Jin & Shangying Liang & Artem Shmatko & Alexander Arnold & David Horst & Thomas G. P. Grünewald & Moritz Gerstung & Xiangzhi Bai, 2024. "Teacher-student collaborated multiple instance learning for pan-cancer PDL1 expression prediction from histopathology slides," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Hao Wang & Jiaxin Yang & Yu Zhang & Jianliang Qian & Jianrong Wang, 2022. "Reconstruct high-resolution 3D genome structures for diverse cell-types using FLAMINGO," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    8. Yanlin Zhang & Mathieu Blanchette, 2022. "Reference panel guided topological structure annotation of Hi-C data," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    9. Shaofu Xu & Jing Wang & Sicheng Yi & Weiwen Zou, 2022. "High-order tensor flow processing using integrated photonic circuits," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Lara Connolley & Lucas Schnabel & Martin Thanbichler & Seán M. Murray, 2023. "Partition complex structure can arise from sliding and bridging of ParB dimers," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Kevin B. Dsouza & Alexandra Maslova & Ediem Al-Jibury & Matthias Merkenschlager & Vijay K. Bhargava & Maxwell W. Libbrecht, 2022. "Learning representations of chromatin contacts using a recurrent neural network identifies genomic drivers of conformation," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    12. Žalik, Mitja & Mongus, Domen & Lukač, Niko, 2024. "High-resolution spatiotemporal assessment of solar potential from remote sensing data using deep learning," Renewable Energy, Elsevier, vol. 222(C).
    13. Kang-Bo Huang & Cheng-Peng Gui & Yun-Ze Xu & Xue-Song Li & Hong-Wei Zhao & Jia-Zheng Cao & Yu-Hang Chen & Yi-Hui Pan & Bing Liao & Yun Cao & Xin-Ke Zhang & Hui Han & Fang-Jian Zhou & Ran-Yi Liu & Wen-, 2024. "A multi-classifier system integrated by clinico-histology-genomic analysis for predicting recurrence of papillary renal cell carcinoma," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    14. Fan Feng & Yuan Yao & Xue Qing David Wang & Xiaotian Zhang & Jie Liu, 2022. "Connecting high-resolution 3D chromatin organization with epigenomics," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51110-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.