IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30270-2.html
   My bibliography  Save this article

Reconstruct high-resolution 3D genome structures for diverse cell-types using FLAMINGO

Author

Listed:
  • Hao Wang

    (Michigan State University)

  • Jiaxin Yang

    (Michigan State University)

  • Yu Zhang

    (Western Michigan University Homer Stryker M.D. School of Medicine)

  • Jianliang Qian

    (Michigan State University
    Michigan State University)

  • Jianrong Wang

    (Michigan State University)

Abstract

High-resolution reconstruction of spatial chromosome organizations from chromatin contact maps is highly demanded, but is hindered by extensive pairwise constraints, substantial missing data, and limited resolution and cell-type availabilities. Here, we present FLAMINGO, a computational method that addresses these challenges by compressing inter-dependent Hi-C interactions to delineate the underlying low-rank structures in 3D space, based on the low-rank matrix completion technique. FLAMINGO successfully generates 5 kb- and 1 kb-resolution spatial conformations for all chromosomes in the human genome across multiple cell-types, the largest resources to date. Compared to other methods using various experimental metrics, FLAMINGO consistently demonstrates superior accuracy in recapitulating observed structures with raises in scalability by orders of magnitude. The reconstructed 3D structures efficiently facilitate discoveries of higher-order multi-way interactions, imply biological interpretations of long-range QTLs, reveal geometrical properties of chromatin, and provide high-resolution references to understand structural variabilities. Importantly, FLAMINGO achieves robust predictions against high rates of missing data and significantly boosts 3D structure resolutions. Moreover, FLAMINGO shows vigorous cross cell-type structure predictions that capture cell-type specific spatial configurations via integration of 1D epigenomic signals. FLAMINGO can be widely applied to large-scale chromatin contact maps and expand high-resolution spatial genome conformations for diverse cell-types.

Suggested Citation

  • Hao Wang & Jiaxin Yang & Yu Zhang & Jianliang Qian & Jianrong Wang, 2022. "Reconstruct high-resolution 3D genome structures for diverse cell-types using FLAMINGO," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30270-2
    DOI: 10.1038/s41467-022-30270-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30270-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30270-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Meizhen Zheng & Simon Zhongyuan Tian & Daniel Capurso & Minji Kim & Rahul Maurya & Byoungkoo Lee & Emaly Piecuch & Liang Gong & Jacqueline Jufen Zhu & Zhihui Li & Chee Hong Wong & Chew Yee Ngan & Ping, 2019. "Multiplex chromatin interactions with single-molecule precision," Nature, Nature, vol. 566(7745), pages 558-562, February.
    2. Robert A. Beagrie & Antonio Scialdone & Markus Schueler & Dorothee C. A. Kraemer & Mita Chotalia & Sheila Q. Xie & Mariano Barbieri & Inês de Santiago & Liron-Mark Lavitas & Miguel R. Branco & James F, 2017. "Complex multi-enhancer contacts captured by genome architecture mapping," Nature, Nature, vol. 543(7646), pages 519-524, March.
    3. Miao Liu & Yanfang Lu & Bing Yang & Yanbo Chen & Jonathan S. D. Radda & Mengwei Hu & Samuel G. Katz & Siyuan Wang, 2020. "Multiplexed imaging of nucleome architectures in single cells of mammalian tissue," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    4. Zhijun Duan & Mirela Andronescu & Kevin Schutz & Sean McIlwain & Yoo Jung Kim & Choli Lee & Jay Shendure & Stanley Fields & C. Anthony Blau & William S. Noble, 2010. "A three-dimensional model of the yeast genome," Nature, Nature, vol. 465(7296), pages 363-367, May.
    5. Melissa J. Fullwood & Mei Hui Liu & You Fu Pan & Jun Liu & Han Xu & Yusoff Bin Mohamed & Yuriy L. Orlov & Stoyan Velkov & Andrea Ho & Poh Huay Mei & Elaine G. Y. Chew & Phillips Yao Hui Huang & Willem, 2009. "An oestrogen-receptor-α-bound human chromatin interactome," Nature, Nature, vol. 462(7269), pages 58-64, November.
    6. Takashi Nagano & Yaniv Lubling & Tim J. Stevens & Stefan Schoenfelder & Eitan Yaffe & Wendy Dean & Ernest D. Laue & Amos Tanay & Peter Fraser, 2013. "Single-cell Hi-C reveals cell-to-cell variability in chromosome structure," Nature, Nature, vol. 502(7469), pages 59-64, October.
    7. Jesse R. Dixon & Inkyung Jung & Siddarth Selvaraj & Yin Shen & Jessica E. Antosiewicz-Bourget & Ah Young Lee & Zhen Ye & Audrey Kim & Nisha Rajagopal & Wei Xie & Yarui Diao & Jing Liang & Huimin Zhao , 2015. "Chromatin architecture reorganization during stem cell differentiation," Nature, Nature, vol. 518(7539), pages 331-336, February.
    8. Shilu Zhang & Deborah Chasman & Sara Knaack & Sushmita Roy, 2019. "In silico prediction of high-resolution Hi-C interaction matrices," Nature Communications, Nature, vol. 10(1), pages 1-18, December.
    9. Simeon Carstens & Michael Nilges & Michael Habeck, 2016. "Inferential Structure Determination of Chromosomes from Single-Cell Hi-C Data," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-33, December.
    10. Chao Dai & Wenyuan Li & Harianto Tjong & Shengli Hao & Yonggang Zhou & Qingjiao Li & Lin Chen & Bing Zhu & Frank Alber & Xianghong Jasmine Zhou, 2016. "Mining 3D genome structure populations identifies major factors governing the stability of regulatory communities," Nature Communications, Nature, vol. 7(1), pages 1-11, September.
    11. Yan Zhang & Lin An & Jie Xu & Bo Zhang & W. Jim Zheng & Ming Hu & Jijun Tang & Feng Yue, 2018. "Enhancing Hi-C data resolution with deep convolutional neural network HiCPlus," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    12. Tuuli Lappalainen & Michael Sammeth & Marc R. Friedländer & Peter A. C. ‘t Hoen & Jean Monlong & Manuel A. Rivas & Mar Gonzàlez-Porta & Natalja Kurbatova & Thasso Griebel & Pedro G. Ferreira & Matthia, 2013. "Transcriptome and genome sequencing uncovers functional variation in humans," Nature, Nature, vol. 501(7468), pages 506-511, September.
    13. Job Dekker & Andrew S. Belmont & Mitchell Guttman & Victor O. Leshyk & John T. Lis & Stavros Lomvardas & Leonid A. Mirny & Clodagh C. O’Shea & Peter J. Park & Bing Ren & Joan C. Ritland Politz & Jay S, 2017. "Correction: Corrigendum: The 4D nucleome project," Nature, Nature, vol. 552(7684), pages 278-278, December.
    14. Job Dekker & Andrew S. Belmont & Mitchell Guttman & Victor O. Leshyk & John T. Lis & Stavros Lomvardas & Leonid A. Mirny & Clodagh C. O’Shea & Peter J. Park & Bing Ren & Joan C. Ritland Politz & Jay S, 2017. "The 4D nucleome project," Nature, Nature, vol. 549(7671), pages 219-226, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guang Shi & D. Thirumalai, 2023. "A maximum-entropy model to predict 3D structural ensembles of chromatin from pairwise distances with applications to interphase chromosomes and structural variants," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abhijit Chakraborty & Jeffrey G. Wang & Ferhat Ay, 2022. "dcHiC detects differential compartments across multiple Hi-C datasets," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    2. Sarah B. Reiff & Andrew J. Schroeder & Koray Kırlı & Andrea Cosolo & Clara Bakker & Luisa Mercado & Soohyun Lee & Alexander D. Veit & Alexander K. Balashov & Carl Vitzthum & William Ronchetti & Kent M, 2022. "The 4D Nucleome Data Portal as a resource for searching and visualizing curated nucleomics data," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Jia-Yong Zhong & Longjian Niu & Zhuo-Bin Lin & Xin Bai & Ying Chen & Feng Luo & Chunhui Hou & Chuan-Le Xiao, 2023. "High-throughput Pore-C reveals the single-allele topology and cell type-specificity of 3D genome folding," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    4. Jingxuan Xu & Xiang Xu & Dandan Huang & Yawen Luo & Lin Lin & Xuemei Bai & Yang Zheng & Qian Yang & Yu Cheng & An Huang & Jingyi Shi & Xiaochen Bo & Jin Gu & Hebing Chen, 2024. "A comprehensive benchmarking with interpretation and operational guidance for the hierarchy of topologically associating domains," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    5. Guang Shi & D. Thirumalai, 2023. "A maximum-entropy model to predict 3D structural ensembles of chromatin from pairwise distances with applications to interphase chromosomes and structural variants," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Yufan Zhou & Tian Li & Lavanya Choppavarapu & Kun Fang & Shili Lin & Victor X. Jin, 2024. "Integration of scHi-C and scRNA-seq data defines distinct 3D-regulated and biological-context dependent cell subpopulations," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Ryan J. Geusz & Allen Wang & Dieter K. Lam & Nicholas K. Vinckier & Konstantinos-Dionysios Alysandratos & David A. Roberts & Jinzhao Wang & Samy Kefalopoulou & Araceli Ramirez & Yunjiang Qiu & Joshua , 2021. "Sequence logic at enhancers governs a dual mechanism of endodermal organ fate induction by FOXA pioneer factors," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    8. Andrea M. Chiariello & Alex Abraham & Simona Bianco & Andrea Esposito & Andrea Fontana & Francesca Vercellone & Mattia Conte & Mario Nicodemi, 2024. "Multiscale modelling of chromatin 4D organization in SARS-CoV-2 infected cells," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Jorine M. Eeftens & Manya Kapoor & Davide Michieletto & Clifford P. Brangwynne, 2021. "Polycomb condensates can promote epigenetic marks but are not required for sustained chromatin compaction," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    10. Li-Hsin Chang & Sourav Ghosh & Andrea Papale & Jennifer M. Luppino & Mélanie Miranda & Vincent Piras & Jéril Degrouard & Joanne Edouard & Mallory Poncelet & Nathan Lecouvreur & Sébastien Bloyer & Amél, 2023. "Multi-feature clustering of CTCF binding creates robustness for loop extrusion blocking and Topologically Associating Domain boundaries," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    11. Zhaohui Qin & Ben Li & Karen N. Conneely & Hao Wu & Ming Hu & Deepak Ayyala & Yongseok Park & Victor X. Jin & Fangyuan Zhang & Han Zhang & Li Li & Shili Lin, 2016. "Statistical Challenges in Analyzing Methylation and Long-Range Chromosomal Interaction Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 8(2), pages 284-309, October.
    12. Laureano Tomás-Daza & Llorenç Rovirosa & Paula López-Martí & Andrea Nieto-Aliseda & François Serra & Ainoa Planas-Riverola & Oscar Molina & Rebecca McDonald & Cedric Ghevaert & Esther Cuatrecasas & Do, 2023. "Low input capture Hi-C (liCHi-C) identifies promoter-enhancer interactions at high-resolution," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    13. Mayank N. K. Choudhary & Kara Quaid & Xiaoyun Xing & Heather Schmidt & Ting Wang, 2023. "Widespread contribution of transposable elements to the rewiring of mammalian 3D genomes," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    14. Claire Marchal & Nivedita Singh & Zachary Batz & Jayshree Advani & Catherine Jaeger & Ximena Corso-Díaz & Anand Swaroop, 2022. "High-resolution genome topology of human retina uncovers super enhancer-promoter interactions at tissue-specific and multifactorial disease loci," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    15. Zhen Wah Tan & Enrico Guarnera & Igor N Berezovsky, 2018. "Exploring chromatin hierarchical organization via Markov State Modelling," PLOS Computational Biology, Public Library of Science, vol. 14(12), pages 1-35, December.
    16. Haowen Zhang & Li Song & Xiaotao Wang & Haoyu Cheng & Chenfei Wang & Clifford A. Meyer & Tao Liu & Ming Tang & Srinivas Aluru & Feng Yue & X. Shirley Liu & Heng Li, 2021. "Fast alignment and preprocessing of chromatin profiles with Chromap," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    17. Gabrielle A. Dotson & Can Chen & Stephen Lindsly & Anthony Cicalo & Sam Dilworth & Charles Ryan & Sivakumar Jeyarajan & Walter Meixner & Cooper Stansbury & Joshua Pickard & Nicholas Beckloff & Amit Su, 2022. "Deciphering multi-way interactions in the human genome," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    18. Dunming Hua & Ming Gu & Xiao Zhang & Yanyi Du & Hangcheng Xie & Li Qi & Xiangjun Du & Zhidong Bai & Xiaopeng Zhu & Dechao Tian, 2024. "DiffDomain enables identification of structurally reorganized topologically associating domains," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    19. Zhongxuan Zhang & Xiaoxiao Rong & Tianjin Xie & Zehao Li & Haozhi Song & Shujun Zhen & Haifeng Wang & Jiahui Wu & Samie R. Jaffrey & Xing Li, 2024. "Fluorogenic CRISPR for genomic DNA imaging," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    20. Riccardo Calandrelli & Xingzhao Wen & John Lalith Charles Richard & Zhifei Luo & Tri C. Nguyen & Chien-Ju Chen & Zhijie Qi & Shuanghong Xue & Weizhong Chen & Zhangming Yan & Weixin Wu & Kathia Zaleta-, 2023. "Genome-wide analysis of the interplay between chromatin-associated RNA and 3D genome organization in human cells," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30270-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.