Deep learning tight-binding approach for large-scale electronic simulations at finite temperatures with ab initio accuracy
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-024-51006-4
Download full text from publisher
References listed on IDEAS
- K. T. Schütt & M. Gastegger & A. Tkatchenko & K.-R. Müller & R. J. Maurer, 2019. "Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Laura Lewis & Hsin-Yuan Huang & Viet T. Tran & Sebastian Lehner & Richard Kueng & John Preskill, 2024. "Improved machine learning algorithm for predicting ground state properties," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
- Amin Alibakhshi & Bernd Hartke, 2022. "Implicitly perturbed Hamiltonian as a class of versatile and general-purpose molecular representations for machine learning," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
- Yi Yang & Xinwei Li & Huamin Li & Dongyin Li & Ruifu Yuan, 2020. "Deep Q-Network for Optimal Decision for Top-Coal Caving," Energies, MDPI, vol. 13(7), pages 1-14, April.
- Michael Scherbela & Leon Gerard & Philipp Grohs, 2024. "Towards a transferable fermionic neural wavefunction for molecules," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Yuanming Bai & Leslie Vogt-Maranto & Mark E. Tuckerman & William J. Glover, 2022. "Machine learning the Hohenberg-Kohn map for molecular excited states," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
- Xiaoxun Gong & He Li & Nianlong Zou & Runzhang Xu & Wenhui Duan & Yong Xu, 2023. "General framework for E(3)-equivariant neural network representation of density functional theory Hamiltonian," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Chao Liang & Yilimiranmu Rouzhahong & Caiyuan Ye & Chong Li & Biao Wang & Huashan Li, 2023. "Material symmetry recognition and property prediction accomplished by crystal capsule representation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Oliver T. Unke & Stefan Chmiela & Michael Gastegger & Kristof T. Schütt & Huziel E. Sauceda & Klaus-Robert Müller, 2021. "SpookyNet: Learning force fields with electronic degrees of freedom and nonlocal effects," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51006-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.