IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-023-44216-9.html
   My bibliography  Save this article

Towards a transferable fermionic neural wavefunction for molecules

Author

Listed:
  • Michael Scherbela

    (University of Vienna)

  • Leon Gerard

    (University of Vienna)

  • Philipp Grohs

    (University of Vienna
    University of Vienna
    Austrian Academy of Sciences)

Abstract

Deep neural networks have become a highly accurate and powerful wavefunction ansatz in combination with variational Monte Carlo methods for solving the electronic Schrödinger equation. However, despite their success and favorable scaling, these methods are still computationally too costly for wide adoption. A significant obstacle is the requirement to optimize the wavefunction from scratch for each new system, thus requiring long optimization. In this work, we propose a neural network ansatz, which effectively maps uncorrelated, computationally cheap Hartree-Fock orbitals, to correlated, high-accuracy neural network orbitals. This ansatz is inherently capable of learning a single wavefunction across multiple compounds and geometries, as we demonstrate by successfully transferring a wavefunction model pre-trained on smaller fragments to larger compounds. Furthermore, we provide ample experimental evidence to support the idea that extensive pre-training of such a generalized wavefunction model across different compounds and geometries could lead to a foundation wavefunction model. Such a model could yield high-accuracy ab-initio energies using only minimal computational effort for fine-tuning and evaluation of observables.

Suggested Citation

  • Michael Scherbela & Leon Gerard & Philipp Grohs, 2024. "Towards a transferable fermionic neural wavefunction for molecules," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44216-9
    DOI: 10.1038/s41467-023-44216-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44216-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44216-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. K. T. Schütt & M. Gastegger & A. Tkatchenko & K.-R. Müller & R. J. Maurer, 2019. "Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    2. Xiang Li & Zhe Li & Ji Chen, 2022. "Ab initio calculation of real solids via neural network ansatz," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. M. T. Entwistle & Z. Schätzle & P. A. Erdman & J. Hermann & F. Noé, 2023. "Electronic excited states in deep variational Monte Carlo," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weiluo Ren & Weizhong Fu & Xiaojie Wu & Ji Chen, 2023. "Towards the ground state of molecules via diffusion Monte Carlo on neural networks," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Laura Lewis & Hsin-Yuan Huang & Viet T. Tran & Sebastian Lehner & Richard Kueng & John Preskill, 2024. "Improved machine learning algorithm for predicting ground state properties," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Amin Alibakhshi & Bernd Hartke, 2022. "Implicitly perturbed Hamiltonian as a class of versatile and general-purpose molecular representations for machine learning," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Yuanming Bai & Leslie Vogt-Maranto & Mark E. Tuckerman & William J. Glover, 2022. "Machine learning the Hohenberg-Kohn map for molecular excited states," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Xiaoxun Gong & He Li & Nianlong Zou & Runzhang Xu & Wenhui Duan & Yong Xu, 2023. "General framework for E(3)-equivariant neural network representation of density functional theory Hamiltonian," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Chao Liang & Yilimiranmu Rouzhahong & Caiyuan Ye & Chong Li & Biao Wang & Huashan Li, 2023. "Material symmetry recognition and property prediction accomplished by crystal capsule representation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Yi Yang & Xinwei Li & Huamin Li & Dongyin Li & Ruifu Yuan, 2020. "Deep Q-Network for Optimal Decision for Top-Coal Caving," Energies, MDPI, vol. 13(7), pages 1-14, April.
    8. Oliver T. Unke & Stefan Chmiela & Michael Gastegger & Kristof T. Schütt & Huziel E. Sauceda & Klaus-Robert Müller, 2021. "SpookyNet: Learning force fields with electronic degrees of freedom and nonlocal effects," Nature Communications, Nature, vol. 12(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44216-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.