IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50968-9.html
   My bibliography  Save this article

Fluorescence changes in carbon nanotube sensors correlate with THz absorption of hydration

Author

Listed:
  • Sanjana S. Nalige

    (Ruhr University Bochum)

  • Phillip Galonska

    (Ruhr University Bochum)

  • Payam Kelich

    (University of Texas at El Paso)

  • Linda Sistemich

    (Ruhr University Bochum)

  • Christian Herrmann

    (Ruhr University Bochum)

  • Lela Vukovic

    (University of Texas at El Paso)

  • Sebastian Kruss

    (Ruhr University Bochum
    Fraunhofer Institute for Microelectronic Circuits and Systems)

  • Martina Havenith

    (Ruhr University Bochum)

Abstract

Single wall carbon nanotubes (SWCNTs) functionalized with (bio-)polymers such as DNA are soluble in water and sense analytes by analyte-specific changes of their intrinsic fluorescence. Such SWCNT-based (bio-)sensors translate the binding of a molecule (molecular recognition) into a measurable optical signal. This signal transduction is crucial for all types of molecular sensors to achieve high sensitivities. Although there is an increasing number of SWCNT-based sensors, there is yet no molecular understanding of the observed changes in the SWCNT’s fluorescence. Here, we report THz experiments that map changes in the local hydration of the solvated SWCNT upon binding of analytes such as the neurotransmitter dopamine or the vitamin riboflavin. The THz amplitude signal serves as a measure of the coupling of charge fluctuations in the SWCNTs to the charge density fluctuations in the hydration layer. We find a linear (inverse) correlation between changes in THz amplitude and the intensity of the change in fluorescence induced by the analytes. Simulations show that the organic corona shapes the local water, which determines the exciton dynamics. Thus, THz signals are a quantitative predictor for signal transduction strength and can be used as a guiding chemical design principle for optimizing fluorescent biosensors.

Suggested Citation

  • Sanjana S. Nalige & Phillip Galonska & Payam Kelich & Linda Sistemich & Christian Herrmann & Lela Vukovic & Sebastian Kruss & Martina Havenith, 2024. "Fluorescence changes in carbon nanotube sensors correlate with THz absorption of hydration," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50968-9
    DOI: 10.1038/s41467-024-50968-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50968-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50968-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nikita Kavokine & Marie-Laure Bocquet & Lydéric Bocquet, 2022. "Fluctuation-induced quantum friction in nanoscale water flows," Nature, Nature, vol. 602(7895), pages 84-90, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mathieu Lizée & Baptiste Coquinot & Guilhem Mariette & Alessandro Siria & Lydéric Bocquet, 2024. "Anomalous friction of supercooled glycerol on mica," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Xinyue Wen & Tobias Foller & Xiaoheng Jin & Tiziana Musso & Priyank Kumar & Rakesh Joshi, 2022. "Understanding water transport through graphene-based nanochannels via experimental control of slip length," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. S. Pullanchery & S. Kulik & T. Schönfeldová & C. K. Egan & G. Cassone & A. Hassanali & S. Roke, 2024. "pH drives electron density fluctuations that enhance electric field-induced liquid flow," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50968-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.