IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50232-0.html
   My bibliography  Save this article

Anomalous friction of supercooled glycerol on mica

Author

Listed:
  • Mathieu Lizée

    (Sorbonne Université, Université de Paris)

  • Baptiste Coquinot

    (Sorbonne Université, Université de Paris)

  • Guilhem Mariette

    (Sorbonne Université, Université de Paris)

  • Alessandro Siria

    (Sorbonne Université, Université de Paris)

  • Lydéric Bocquet

    (Sorbonne Université, Université de Paris)

Abstract

Although friction of liquids on solid surfaces is traditionally linked to wettability, recent works have unveiled the role of the solid’s internal excitations on interfacial dissipation. In order to directly evidence such couplings, we take advantage of the considerable variation of the molecular timescales of supercooled glycerol under mild change of temperature to explore how friction depends on the liquid’s molecular dynamics. Using a dedicated tuning-fork AFM, we measure the slippage of glycerol on mica. We report a 100 fold increase of slip length upon cooling, while liquid-solid friction exhibits a linear scaling with molecular relaxation rate at high temperature. This scaling can be explained by a contribution of mica’s phonons which resonate with density fluctuations in the liquid, allowing efficient momentum transfer to mica. These results suggest that engineering phononic spectra of materials could enhance flow performance in nanofluidic channels and industrially relevant membranes.

Suggested Citation

  • Mathieu Lizée & Baptiste Coquinot & Guilhem Mariette & Alessandro Siria & Lydéric Bocquet, 2024. "Anomalous friction of supercooled glycerol on mica," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50232-0
    DOI: 10.1038/s41467-024-50232-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50232-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50232-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nikita Kavokine & Marie-Laure Bocquet & Lydéric Bocquet, 2022. "Fluctuation-induced quantum friction in nanoscale water flows," Nature, Nature, vol. 602(7895), pages 84-90, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sanjana S. Nalige & Phillip Galonska & Payam Kelich & Linda Sistemich & Christian Herrmann & Lela Vukovic & Sebastian Kruss & Martina Havenith, 2024. "Fluorescence changes in carbon nanotube sensors correlate with THz absorption of hydration," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Xinyue Wen & Tobias Foller & Xiaoheng Jin & Tiziana Musso & Priyank Kumar & Rakesh Joshi, 2022. "Understanding water transport through graphene-based nanochannels via experimental control of slip length," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. S. Pullanchery & S. Kulik & T. Schönfeldová & C. K. Egan & G. Cassone & A. Hassanali & S. Roke, 2024. "pH drives electron density fluctuations that enhance electric field-induced liquid flow," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50232-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.